| @@ 100-119 (lines=20) @@ | ||
| 97 | super().__init__(min_variance=min_variance, **kwargs) |
|
| 98 | ||
| 99 | ||
| 100 | class GPR: |
|
| 101 | def __init__(self): |
|
| 102 | length_scale_param = 1 |
|
| 103 | length_scale_bounds_param = (1e-05, 100000.0) |
|
| 104 | nu_param = 0.5 |
|
| 105 | matern = Matern( |
|
| 106 | # length_scale=length_scale_param, |
|
| 107 | # length_scale_bounds=length_scale_bounds_param, |
|
| 108 | nu=nu_param, |
|
| 109 | ) |
|
| 110 | ||
| 111 | self.gpr = GaussianProcessRegressor( |
|
| 112 | kernel=matern + WhiteKernel(), n_restarts_optimizer=0 |
|
| 113 | ) |
|
| 114 | ||
| 115 | def fit(self, X, y): |
|
| 116 | self.gpr.fit(X, y) |
|
| 117 | ||
| 118 | def predict(self, X, return_std=False): |
|
| 119 | return self.gpr.predict(X, return_std=return_std) |
|
| 120 | ||
| 121 | ||
| 122 | class GPR_linear: |
|
| @@ 79-96 (lines=18) @@ | ||
| 76 | search_data6 = opt6.search_data |
|
| 77 | ||
| 78 | ||
| 79 | class GPR: |
|
| 80 | def __init__(self): |
|
| 81 | nu_param = 0.5 |
|
| 82 | matern = Matern( |
|
| 83 | # length_scale=length_scale_param, |
|
| 84 | # length_scale_bounds=length_scale_bounds_param, |
|
| 85 | nu=nu_param, |
|
| 86 | ) |
|
| 87 | ||
| 88 | self.gpr = GaussianProcessRegressor( |
|
| 89 | kernel=matern + RBF() + WhiteKernel(), n_restarts_optimizer=1 |
|
| 90 | ) |
|
| 91 | ||
| 92 | def fit(self, X, y): |
|
| 93 | self.gpr.fit(X, y) |
|
| 94 | ||
| 95 | def predict(self, X, return_std=False): |
|
| 96 | return self.gpr.predict(X, return_std=return_std) |
|
| 97 | ||
| 98 | ||
| 99 | bayesian_optimizer_para = [ |
|