tests/test_empty_output/verbose.py 1 location
|
@@ 5-15 (lines=11) @@
|
| 2 |
|
from gradient_free_optimizers import RandomSearchOptimizer |
| 3 |
|
|
| 4 |
|
|
| 5 |
|
def ackley_function(para): |
| 6 |
|
x, y = para["x"], para["y"] |
| 7 |
|
|
| 8 |
|
loss = ( |
| 9 |
|
-20 * np.exp(-0.2 * np.sqrt(0.5 * (x * x + y * y))) |
| 10 |
|
- np.exp(0.5 * (np.cos(2 * np.pi * x) + np.cos(2 * np.pi * y))) |
| 11 |
|
+ np.exp(1) |
| 12 |
|
+ 20 |
| 13 |
|
) |
| 14 |
|
|
| 15 |
|
return -loss |
| 16 |
|
|
| 17 |
|
|
| 18 |
|
search_space = { |
tests/test_empty_output/non_verbose.py 1 location
|
@@ 57-67 (lines=11) @@
|
| 54 |
|
] |
| 55 |
|
|
| 56 |
|
|
| 57 |
|
def ackley_function(para): |
| 58 |
|
x, y = para["x"], para["y"] |
| 59 |
|
|
| 60 |
|
loss = ( |
| 61 |
|
-20 * np.exp(-0.2 * np.sqrt(0.5 * (x * x + y * y))) |
| 62 |
|
- np.exp(0.5 * (np.cos(2 * np.pi * x) + np.cos(2 * np.pi * y))) |
| 63 |
|
+ np.exp(1) |
| 64 |
|
+ 20 |
| 65 |
|
) |
| 66 |
|
|
| 67 |
|
return -loss |
| 68 |
|
|
| 69 |
|
|
| 70 |
|
search_space = { |