|
@@ 50-64 (lines=15) @@
|
| 47 |
|
assert opt.best_para == init |
| 48 |
|
|
| 49 |
|
|
| 50 |
|
@pytest.mark.parametrize(*optimizers) |
| 51 |
|
def test_initialize_warm_start_2(Optimizer): |
| 52 |
|
search_space = { |
| 53 |
|
"x1": np.arange(-10, 10, 1), |
| 54 |
|
} |
| 55 |
|
init = { |
| 56 |
|
"x1": -10, |
| 57 |
|
} |
| 58 |
|
|
| 59 |
|
initialize = {"warm_start": [init], "random": 0, "vertices": 0, "grid": 0} |
| 60 |
|
|
| 61 |
|
opt = Optimizer(search_space, initialize=initialize) |
| 62 |
|
opt.search(objective_function, n_iter=1) |
| 63 |
|
|
| 64 |
|
assert opt.best_para == init |
| 65 |
|
|
| 66 |
|
|
| 67 |
|
@pytest.mark.parametrize(*optimizers) |
|
@@ 33-47 (lines=15) @@
|
| 30 |
|
assert abs(opt.best_score) < 0.001 |
| 31 |
|
|
| 32 |
|
|
| 33 |
|
@pytest.mark.parametrize(*optimizers) |
| 34 |
|
def test_initialize_warm_start_1(Optimizer): |
| 35 |
|
search_space = { |
| 36 |
|
"x1": np.arange(-10, 10, 1), |
| 37 |
|
} |
| 38 |
|
init = { |
| 39 |
|
"x1": -10, |
| 40 |
|
} |
| 41 |
|
|
| 42 |
|
initialize = {"warm_start": [init]} |
| 43 |
|
|
| 44 |
|
opt = Optimizer(search_space, initialize=initialize) |
| 45 |
|
opt.search(objective_function, n_iter=1) |
| 46 |
|
|
| 47 |
|
assert opt.best_para == init |
| 48 |
|
|
| 49 |
|
|
| 50 |
|
@pytest.mark.parametrize(*optimizers) |