Code Duplication    Length = 58-66 lines in 6 locations

src/gradient_free_optimizers/optimizer_search/simulated_annealing.py 1 location

@@ 13-78 (lines=66) @@
10
)
11
12
13
class SimulatedAnnealingOptimizer(_SimulatedAnnealingOptimizer, Search):
14
    """
15
    A class implementing **simulated annealing** for the public API.
16
    Inheriting from the `Search`-class to get the `search`-method and from
17
    the `SimulatedAnnealingOptimizer`-backend to get the underlying algorithm.
18
19
    Parameters
20
    ----------
21
    search_space : dict[str, list]
22
        The search space to explore. A dictionary with parameter
23
        names as keys and a numpy array as values.
24
    initialize : dict[str, int]
25
        The method to generate initial positions. A dictionary with
26
        the following key literals and the corresponding value type:
27
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
28
    constraints : list[callable]
29
        A list of constraints, where each constraint is a callable.
30
        The callable returns `True` or `False` dependend on the input parameters.
31
    random_state : None, int
32
        If None, create a new random state. If int, create a new random state
33
        seeded with the value.
34
    rand_rest_p : float
35
        The probability of a random iteration during the the search process.
36
    epsilon : float
37
        The step-size for the climbing.
38
    distribution : str
39
        The type of distribution to sample from.
40
    n_neighbours : int
41
        The number of neighbours to sample and evaluate before moving to the best
42
        of those neighbours.
43
    annealing_rate : float
44
        The rate at which the temperature is annealed.
45
    start_temp : float
46
        The initial temperature.
47
    """
48
49
    def __init__(
50
        self,
51
        search_space: Dict[str, list],
52
        initialize: Dict[
53
            Literal["grid", "vertices", "random", "warm_start"], int | List
54
        ] = {"grid": 4, "random": 2, "vertices": 4},
55
        constraints: List[callable] = [],
56
        random_state: int = None,
57
        rand_rest_p: float = 0,
58
        nth_process: int = None,
59
        epsilon: float = 0.03,
60
        distribution: Literal[
61
            "normal", "laplace", "gumbel", "logistic"
62
        ] = "normal",
63
        n_neighbours: int = 3,
64
        annealing_rate: float = 0.97,
65
        start_temp: float = 1,
66
    ):
67
        super().__init__(
68
            search_space=search_space,
69
            initialize=initialize,
70
            constraints=constraints,
71
            random_state=random_state,
72
            rand_rest_p=rand_rest_p,
73
            nth_process=nth_process,
74
            epsilon=epsilon,
75
            distribution=distribution,
76
            n_neighbours=n_neighbours,
77
            annealing_rate=annealing_rate,
78
            start_temp=start_temp,
79
        )
80

src/gradient_free_optimizers/optimizer_search/random_annealing.py 1 location

@@ 11-76 (lines=66) @@
8
from ..optimizers import RandomAnnealingOptimizer as _RandomAnnealingOptimizer
9
10
11
class RandomAnnealingOptimizer(_RandomAnnealingOptimizer, Search):
12
    """
13
    A class implementing **random annealing** for the public API.
14
    Inheriting from the `Search`-class to get the `search`-method and from
15
    the `RandomAnnealingOptimizer`-backend to get the underlying algorithm.
16
17
    Parameters
18
    ----------
19
    search_space : dict[str, list]
20
        The search space to explore. A dictionary with parameter
21
        names as keys and a numpy array as values.
22
    initialize : dict[str, int]
23
        The method to generate initial positions. A dictionary with
24
        the following key literals and the corresponding value type:
25
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
26
    constraints : list[callable]
27
        A list of constraints, where each constraint is a callable.
28
        The callable returns `True` or `False` dependend on the input parameters.
29
    random_state : None, int
30
        If None, create a new random state. If int, create a new random state
31
        seeded with the value.
32
    rand_rest_p : float
33
        The probability of a random iteration during the the search process.
34
    epsilon : float
35
        The step-size for the climbing.
36
    distribution : str
37
        The type of distribution to sample from.
38
    n_neighbours : int
39
        The number of neighbours to sample and evaluate before moving to the best
40
        of those neighbours.
41
    annealing_rate : float
42
        The annealing rate for the temperature.
43
    start_temp : float
44
        The initial temperature.
45
    """
46
47
    def __init__(
48
        self,
49
        search_space: Dict[str, list],
50
        initialize: Dict[
51
            Literal["grid", "vertices", "random", "warm_start"], int | List
52
        ] = {"grid": 4, "random": 2, "vertices": 4},
53
        constraints: List[callable] = [],
54
        random_state: int = None,
55
        rand_rest_p: float = 0,
56
        nth_process: int = None,
57
        epsilon: float = 0.03,
58
        distribution: Literal[
59
            "normal", "laplace", "gumbel", "logistic"
60
        ] = "normal",
61
        n_neighbours: int = 3,
62
        annealing_rate=0.98,
63
        start_temp=10,
64
    ):
65
        super().__init__(
66
            search_space=search_space,
67
            initialize=initialize,
68
            constraints=constraints,
69
            random_state=random_state,
70
            rand_rest_p=rand_rest_p,
71
            nth_process=nth_process,
72
            epsilon=epsilon,
73
            distribution=distribution,
74
            n_neighbours=n_neighbours,
75
            annealing_rate=annealing_rate,
76
            start_temp=start_temp,
77
        )
78

src/gradient_free_optimizers/optimizer_search/random_restart_hill_climbing.py 1 location

@@ 13-76 (lines=64) @@
10
)
11
12
13
class RandomRestartHillClimbingOptimizer(
14
    _RandomRestartHillClimbingOptimizer, Search
15
):
16
    """
17
    A class implementing the **random restart hill climbing optimizer** for the public API.
18
    Inheriting from the `Search`-class to get the `search`-method and from
19
    the `RandomRestartHillClimbingOptimizer`-backend to get the underlying algorithm.
20
21
    Parameters
22
    ----------
23
    search_space : dict[str, list]
24
        The search space to explore. A dictionary with parameter
25
        names as keys and a numpy array as values.
26
    initialize : dict[str, int]
27
        The method to generate initial positions. A dictionary with
28
        the following key literals and the corresponding value type:
29
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
30
    constraints : list[callable]
31
        A list of constraints, where each constraint is a callable.
32
        The callable returns `True` or `False` dependend on the input parameters.
33
    random_state : None, int
34
        If None, create a new random state. If int, create a new random state
35
        seeded with the value.
36
    rand_rest_p : float
37
        The probability of a random iteration during the the search process.
38
    epsilon : float
39
        The step-size for the climbing.
40
    distribution : str
41
        The type of distribution to sample from.
42
    n_neighbours : int
43
        The number of neighbours to sample and evaluate before moving to the best
44
        of those neighbours.
45
    n_iter_restart : int
46
        The number of iterations after which to restart at a random position.
47
    """
48
49
    def __init__(
50
        self,
51
        search_space: Dict[str, list],
52
        initialize: Dict[
53
            Literal["grid", "vertices", "random", "warm_start"], int | List
54
        ] = {"grid": 4, "random": 2, "vertices": 4},
55
        constraints: List[callable] = [],
56
        random_state: int = None,
57
        rand_rest_p: float = 0,
58
        nth_process: int = None,
59
        epsilon: float = 0.03,
60
        distribution: Literal[
61
            "normal", "laplace", "gumbel", "logistic"
62
        ] = "normal",
63
        n_neighbours: int = 3,
64
        n_iter_restart: int = 10,
65
    ):
66
        super().__init__(
67
            search_space=search_space,
68
            initialize=initialize,
69
            constraints=constraints,
70
            random_state=random_state,
71
            rand_rest_p=rand_rest_p,
72
            nth_process=nth_process,
73
            epsilon=epsilon,
74
            distribution=distribution,
75
            n_neighbours=n_neighbours,
76
            n_iter_restart=n_iter_restart,
77
        )
78

src/gradient_free_optimizers/optimizer_search/stochastic_hill_climbing.py 1 location

@@ 13-74 (lines=62) @@
10
)
11
12
13
class StochasticHillClimbingOptimizer(_StochasticHillClimbingOptimizer, Search):
14
    """
15
    A class implementing the **stochastic hill climbing optimizer** for the public API.
16
    Inheriting from the `Search`-class to get the `search`-method and from
17
    the `StochasticHillClimbingOptimizer`-backend to get the underlying algorithm.
18
19
    Parameters
20
    ----------
21
    search_space : dict[str, list]
22
        The search space to explore. A dictionary with parameter
23
        names as keys and a numpy array as values.
24
    initialize : dict[str, int]
25
        The method to generate initial positions. A dictionary with
26
        the following key literals and the corresponding value type:
27
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
28
    constraints : list[callable]
29
        A list of constraints, where each constraint is a callable.
30
        The callable returns `True` or `False` dependend on the input parameters.
31
    random_state : None, int
32
        If None, create a new random state. If int, create a new random state
33
        seeded with the value.
34
    rand_rest_p : float
35
        The probability of a random iteration during the the search process.
36
    epsilon : float
37
        The step-size for the climbing.
38
    distribution : str
39
        The type of distribution to sample from.
40
    n_neighbours : int
41
        The number of neighbours to sample and evaluate before moving to the best
42
        of those neighbours.
43
    p_accept : float, default=0.5
44
        probability to accept a worse solution
45
    """
46
47
    def __init__(
48
        self,
49
        search_space: Dict[str, list],
50
        initialize: Dict[
51
            Literal["grid", "vertices", "random", "warm_start"], int | List
52
        ] = {"grid": 4, "random": 2, "vertices": 4},
53
        constraints: List[callable] = [],
54
        random_state: int = None,
55
        rand_rest_p: float = 0,
56
        nth_process: int = None,
57
        epsilon: float = 0.03,
58
        distribution: Literal[
59
            "normal", "laplace", "gumbel", "logistic"
60
        ] = "normal",
61
        n_neighbours: int = 3,
62
        p_accept: float = 0.5,
63
    ):
64
        super().__init__(
65
            search_space=search_space,
66
            initialize=initialize,
67
            constraints=constraints,
68
            random_state=random_state,
69
            rand_rest_p=rand_rest_p,
70
            nth_process=nth_process,
71
            epsilon=epsilon,
72
            distribution=distribution,
73
            n_neighbours=n_neighbours,
74
            p_accept=p_accept,
75
        )
76

src/gradient_free_optimizers/optimizer_search/repulsing_hill_climbing.py 1 location

@@ 13-74 (lines=62) @@
10
)
11
12
13
class RepulsingHillClimbingOptimizer(_RepulsingHillClimbingOptimizer, Search):
14
    """
15
    A class implementing the **repulsing hill climbing optimizer** for the public API.
16
    Inheriting from the `Search`-class to get the `search`-method and from
17
    the `RepulsingHillClimbingOptimizer`-backend to get the underlying algorithm.
18
19
    Parameters
20
    ----------
21
    search_space : dict[str, list]
22
        The search space to explore. A dictionary with parameter
23
        names as keys and a numpy array as values.
24
    initialize : dict[str, int]
25
        The method to generate initial positions. A dictionary with
26
        the following key literals and the corresponding value type:
27
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
28
    constraints : list[callable]
29
        A list of constraints, where each constraint is a callable.
30
        The callable returns `True` or `False` dependend on the input parameters.
31
    random_state : None, int
32
        If None, create a new random state. If int, create a new random state
33
        seeded with the value.
34
    rand_rest_p : float
35
        The probability of a random iteration during the the search process.
36
    epsilon : float
37
        The step-size for the climbing.
38
    distribution : str
39
        The type of distribution to sample from.
40
    n_neighbours : int
41
        The number of neighbours to sample and evaluate before moving to the best
42
        of those neighbours.
43
    repulsion_factor : float
44
        The factor to increate epsilon when no better position is found
45
    """
46
47
    def __init__(
48
        self,
49
        search_space: Dict[str, list],
50
        initialize: Dict[
51
            Literal["grid", "vertices", "random", "warm_start"], int | List
52
        ] = {"grid": 4, "random": 2, "vertices": 4},
53
        constraints: List[callable] = [],
54
        random_state: int = None,
55
        rand_rest_p: float = 0,
56
        nth_process: int = None,
57
        epsilon: float = 0.03,
58
        distribution: Literal[
59
            "normal", "laplace", "gumbel", "logistic"
60
        ] = "normal",
61
        n_neighbours: int = 3,
62
        repulsion_factor: float = 5,
63
    ):
64
        super().__init__(
65
            search_space=search_space,
66
            initialize=initialize,
67
            constraints=constraints,
68
            random_state=random_state,
69
            rand_rest_p=rand_rest_p,
70
            nth_process=nth_process,
71
            epsilon=epsilon,
72
            distribution=distribution,
73
            n_neighbours=n_neighbours,
74
            repulsion_factor=repulsion_factor,
75
        )
76

src/gradient_free_optimizers/optimizer_search/hill_climbing.py 1 location

@@ 11-68 (lines=58) @@
8
from ..optimizers import HillClimbingOptimizer as _HillClimbingOptimizer
9
10
11
class HillClimbingOptimizer(_HillClimbingOptimizer, Search):
12
    """
13
    A class implementing the **hill climbing optimizer** for the public API.
14
    Inheriting from the `Search`-class to get the `search`-method and from
15
    the `HillClimbingOptimizer`-backend to get the underlying algorithm.
16
17
    Parameters
18
    ----------
19
    search_space : dict[str, list]
20
        The search space to explore. A dictionary with parameter
21
        names as keys and a numpy array as values.
22
    initialize : dict[str, int]
23
        The method to generate initial positions. A dictionary with
24
        the following key literals and the corresponding value type:
25
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
26
    constraints : list[callable]
27
        A list of constraints, where each constraint is a callable.
28
        The callable returns `True` or `False` dependend on the input parameters.
29
    random_state : None, int
30
        If None, create a new random state. If int, create a new random state
31
        seeded with the value.
32
    rand_rest_p : float
33
        The probability of a random iteration during the the search process.
34
    epsilon : float
35
        The step-size for the climbing.
36
    distribution : str
37
        The type of distribution to sample from.
38
    n_neighbours : int
39
        The number of neighbours to sample and evaluate before moving to the best
40
        of those neighbours.
41
    """
42
43
    def __init__(
44
        self,
45
        search_space: Dict[str, list],
46
        initialize: Dict[
47
            Literal["grid", "vertices", "random", "warm_start"], int | List
48
        ] = {"grid": 4, "random": 2, "vertices": 4},
49
        constraints: List[callable] = [],
50
        random_state: int = None,
51
        rand_rest_p: float = 0,
52
        nth_process: int = None,
53
        epsilon: float = 0.03,
54
        distribution: Literal[
55
            "normal", "laplace", "gumbel", "logistic"
56
        ] = "normal",
57
        n_neighbours: int = 3,
58
    ):
59
        super().__init__(
60
            search_space=search_space,
61
            initialize=initialize,
62
            constraints=constraints,
63
            random_state=random_state,
64
            rand_rest_p=rand_rest_p,
65
            nth_process=nth_process,
66
            epsilon=epsilon,
67
            distribution=distribution,
68
            n_neighbours=n_neighbours,
69
        )
70