1
|
|
|
import numpy as np |
2
|
|
|
import pandas as pd |
3
|
|
|
from gradient_free_optimizers import RandomSearchOptimizer |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
def objective_function(para): |
7
|
|
|
score = -para["x1"] * para["x1"] |
8
|
|
|
return score |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
search_space = { |
12
|
|
|
"x1": np.arange(0, 100000, 0.1), |
13
|
|
|
} |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
def test_attributes_results_0(): |
17
|
|
|
opt = RandomSearchOptimizer(search_space) |
18
|
|
|
opt.search(objective_function, n_iter=100) |
19
|
|
|
|
20
|
|
|
assert isinstance(opt.search_data, pd.DataFrame) |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
def test_attributes_results_1(): |
24
|
|
|
opt = RandomSearchOptimizer(search_space) |
25
|
|
|
opt.search(objective_function, n_iter=100) |
26
|
|
|
|
27
|
|
|
assert set(search_space.keys()) < set(opt.search_data.columns) |
28
|
|
|
|
29
|
|
|
|
30
|
|
|
def test_attributes_results_2(): |
31
|
|
|
opt = RandomSearchOptimizer(search_space) |
32
|
|
|
opt.search(objective_function, n_iter=100) |
33
|
|
|
|
34
|
|
|
assert "x1" in list(opt.search_data.columns) |
35
|
|
|
|
36
|
|
|
|
37
|
|
|
def test_attributes_results_3(): |
38
|
|
|
opt = RandomSearchOptimizer(search_space) |
39
|
|
|
opt.search(objective_function, n_iter=100) |
40
|
|
|
|
41
|
|
|
assert "score" in list(opt.search_data.columns) |
42
|
|
|
|
43
|
|
|
|
44
|
|
|
def test_attributes_results_4(): |
45
|
|
|
opt = RandomSearchOptimizer(search_space, initialize={"warm_start": [{"x1": 0}]}) |
46
|
|
|
opt.search(objective_function, n_iter=1) |
47
|
|
|
|
48
|
|
|
assert 0 in list(opt.search_data["x1"].values) |
49
|
|
|
|
50
|
|
|
|
51
|
|
|
def test_attributes_results_5(): |
52
|
|
|
opt = RandomSearchOptimizer(search_space, initialize={"warm_start": [{"x1": 10}]}) |
53
|
|
|
opt.search(objective_function, n_iter=1) |
54
|
|
|
|
55
|
|
|
assert 10 in list(opt.search_data["x1"].values) |
56
|
|
|
|
57
|
|
|
|
58
|
|
|
def test_attributes_results_6(): |
59
|
|
|
def objective_function(para): |
60
|
|
|
score = -para["x1"] * para["x1"] |
61
|
|
|
return score |
62
|
|
|
|
63
|
|
|
search_space = { |
64
|
|
|
"x1": np.arange(0, 10, 1), |
65
|
|
|
} |
66
|
|
|
|
67
|
|
|
opt = RandomSearchOptimizer(search_space, initialize={"random": 1}) |
68
|
|
|
opt.search(objective_function, n_iter=20, memory=False) |
69
|
|
|
|
70
|
|
|
x1_results = list(opt.search_data["x1"].values) |
71
|
|
|
|
72
|
|
|
print("\n x1_results \n", x1_results) |
73
|
|
|
|
74
|
|
|
assert len(set(x1_results)) < len(x1_results) |
75
|
|
|
|
76
|
|
|
|
77
|
|
|
""" |
78
|
|
|
def test_attributes_results_7(): |
79
|
|
|
def objective_function(para): |
80
|
|
|
score = -para["x1"] * para["x1"] |
81
|
|
|
return score |
82
|
|
|
|
83
|
|
|
search_space = { |
84
|
|
|
"x1": np.arange(0, 10, 1), |
85
|
|
|
} |
86
|
|
|
|
87
|
|
|
opt = RandomSearchOptimizer(search_space) |
88
|
|
|
opt.search( |
89
|
|
|
objective_function, n_iter=20, initialize={"random": 1}, memory=True |
90
|
|
|
) |
91
|
|
|
|
92
|
|
|
x1_results = list(opt.search_data["x1"].values) |
93
|
|
|
|
94
|
|
|
print("\n x1_results \n", x1_results) |
95
|
|
|
|
96
|
|
|
assert len(set(x1_results)) == len(x1_results) |
97
|
|
|
|
98
|
|
|
|
99
|
|
|
def test_attributes_results_8(): |
100
|
|
|
def objective_function(para): |
101
|
|
|
score = -para["x1"] * para["x1"] |
102
|
|
|
return score |
103
|
|
|
|
104
|
|
|
search_space = { |
105
|
|
|
"x1": np.arange(-10, 11, 1), |
106
|
|
|
} |
107
|
|
|
|
108
|
|
|
results = pd.DataFrame(np.arange(-10, 10, 1), columns=["x1"]) |
109
|
|
|
results["score"] = 0 |
110
|
|
|
|
111
|
|
|
opt = RandomSearchOptimizer(search_space) |
112
|
|
|
opt.search( |
113
|
|
|
objective_function, |
114
|
|
|
n_iter=100, |
115
|
|
|
initialize={}, |
116
|
|
|
memory=True, |
117
|
|
|
memory_warm_start=results, |
118
|
|
|
) |
119
|
|
|
|
120
|
|
|
print("\n opt.search_data \n", opt.search_data) |
121
|
|
|
|
122
|
|
|
x1_results = list(opt.search_data["x1"].values) |
123
|
|
|
|
124
|
|
|
assert 10 == x1_results[0] |
125
|
|
|
""" |
126
|
|
|
|