| Total Complexity | 2 |
| Total Lines | 37 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import pytest |
||
| 2 | import random |
||
| 3 | import numpy as np |
||
| 4 | |||
| 5 | from ._parametrize import optimizers |
||
| 6 | |||
| 7 | |||
| 8 | def objective_function(para): |
||
| 9 | return -(para["x1"] + para["x1"]) |
||
| 10 | |||
| 11 | |||
| 12 | search_space1 = { |
||
| 13 | "x1": np.array([1]), |
||
| 14 | "x2": np.arange(-10, 10, 1), |
||
| 15 | } |
||
| 16 | |||
| 17 | search_space2 = { |
||
| 18 | "x1": np.arange(-10, 10, 1), |
||
| 19 | "x2": np.array([1]), |
||
| 20 | } |
||
| 21 | |||
| 22 | |||
| 23 | objective_para = ( |
||
| 24 | "search_space", |
||
| 25 | [ |
||
| 26 | (search_space1), |
||
| 27 | (search_space2), |
||
| 28 | ], |
||
| 29 | ) |
||
| 30 | |||
| 31 | |||
| 32 | @pytest.mark.parametrize(*objective_para) |
||
| 33 | @pytest.mark.parametrize(*optimizers) |
||
| 34 | def test_best_results_0(Optimizer, search_space): |
||
| 35 | opt = Optimizer(search_space) |
||
| 36 | opt.search(objective_function, n_iter=30) |
||
| 37 |