Total Complexity | 2 |
Total Lines | 35 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | # Author: Simon Blanke |
||
2 | # Email: [email protected] |
||
3 | # License: MIT License |
||
4 | |||
5 | import pytest |
||
6 | import numpy as np |
||
7 | |||
8 | from gradient_free_optimizers import StochasticHillClimbingOptimizer |
||
9 | from .test_hill_climbing_para_init import hill_climbing_para |
||
10 | from ._base_para_test import _base_para_test_func |
||
11 | |||
12 | |||
13 | def objective_function(para): |
||
14 | score = -para["x1"] * para["x1"] |
||
15 | return score |
||
16 | |||
17 | |||
18 | search_space = {"x1": np.arange(-100, 101, 1)} |
||
19 | |||
20 | |||
21 | stochastic_hill_climbing_para = hill_climbing_para + [ |
||
22 | ({"p_accept": 0.01}), |
||
23 | ({"p_accept": 0.5}), |
||
24 | ({"p_accept": 1}), |
||
25 | ({"p_accept": 10}), |
||
26 | ] |
||
27 | |||
28 | |||
29 | pytest_wrapper = ("opt_para", stochastic_hill_climbing_para) |
||
30 | |||
31 | |||
32 | @pytest.mark.parametrize(*pytest_wrapper) |
||
33 | def test_hill_climbing_para(opt_para): |
||
34 | _base_para_test_func(opt_para, StochasticHillClimbingOptimizer) |
||
35 |