| Total Complexity | 2 |
| Total Lines | 29 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | # Author: Simon Blanke |
||
| 2 | # Email: [email protected] |
||
| 3 | # License: MIT License |
||
| 4 | |||
| 5 | import numpy as np |
||
| 6 | |||
| 7 | |||
| 8 | def objective_function(para): |
||
| 9 | score = -para["x1"] * para["x1"] |
||
| 10 | return score |
||
| 11 | |||
| 12 | |||
| 13 | search_space = {"x1": np.arange(-100, 101, 1)} |
||
| 14 | |||
| 15 | |||
| 16 | def _base_para_test_func(opt_para, optimizer): |
||
| 17 | opt = optimizer(search_space, initialize={"vertices": 1}, **opt_para) |
||
| 18 | opt.search( |
||
| 19 | objective_function, |
||
| 20 | n_iter=30, |
||
| 21 | memory=False, |
||
| 22 | verbosity=False, |
||
| 23 | ) |
||
| 24 | |||
| 25 | para_key = list(opt_para.keys())[0] |
||
| 26 | para_value = getattr(opt, para_key) |
||
| 27 | |||
| 28 | assert para_value is opt_para[para_key] |
||
| 29 |