|
1
|
|
|
import pytest |
|
2
|
|
|
import numpy as np |
|
3
|
|
|
|
|
4
|
|
|
from ._parametrize import optimizers_noSBOM, optimizers_SBOM |
|
5
|
|
|
|
|
6
|
|
|
|
|
7
|
|
|
def objective_function(para): |
|
8
|
|
|
return 1 |
|
9
|
|
|
|
|
10
|
|
|
|
|
11
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers_noSBOM) |
|
|
|
|
|
|
12
|
|
|
def test_large_search_space_0(Optimizer): |
|
13
|
|
|
|
|
14
|
|
|
search_space = { |
|
15
|
|
|
"x1": np.arange(0, 100000), |
|
16
|
|
|
"x2": np.arange(0, 100000), |
|
17
|
|
|
"x3": np.arange(0, 100000), |
|
18
|
|
|
} |
|
19
|
|
|
opt = Optimizer(search_space, initialize={"random": 10}) |
|
20
|
|
|
opt.search(objective_function, n_iter=150, verbosity=False) |
|
21
|
|
|
|
|
22
|
|
|
|
|
23
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers_noSBOM) |
|
|
|
|
|
|
24
|
|
|
def test_large_search_space_1(Optimizer): |
|
25
|
|
|
|
|
26
|
|
|
search_space = { |
|
27
|
|
|
"x1": np.arange(0, 100, 0.001), |
|
28
|
|
|
"x2": np.arange(0, 100, 0.001), |
|
29
|
|
|
"x3": np.arange(0, 100, 0.001), |
|
30
|
|
|
} |
|
31
|
|
|
|
|
32
|
|
|
opt = Optimizer(search_space, initialize={"random": 10}) |
|
33
|
|
|
opt.search(objective_function, n_iter=150, verbosity=False) |
|
34
|
|
|
|
|
35
|
|
|
|
|
36
|
|
|
@pytest.mark.parametrize(*optimizers_noSBOM) |
|
37
|
|
|
def test_large_search_space_2(Optimizer): |
|
38
|
|
|
|
|
39
|
|
|
search_space = {} |
|
40
|
|
|
for i in range(33): |
|
41
|
|
|
key = "x" + str(i) |
|
42
|
|
|
search_space[key] = np.arange(0, 100) |
|
43
|
|
|
|
|
44
|
|
|
opt = Optimizer(search_space, initialize={"random": 34, "vertices": 34, "grid": 34}) |
|
45
|
|
|
opt.search(objective_function, n_iter=1000, verbosity=False) |
|
46
|
|
|
|
|
47
|
|
|
|
|
48
|
|
|
@pytest.mark.parametrize(*optimizers_SBOM) |
|
49
|
|
|
def test_large_search_space_3(Optimizer): |
|
50
|
|
|
|
|
51
|
|
|
search_space = {} |
|
52
|
|
|
for i in range(10): |
|
53
|
|
|
key = "x" + str(i) |
|
54
|
|
|
search_space[key] = np.arange(0, 10) |
|
55
|
|
|
|
|
56
|
|
|
opt = Optimizer(search_space, initialize={"random": 1}) |
|
57
|
|
|
opt.search(objective_function, n_iter=2, verbosity=False) |
|
58
|
|
|
|