Total Complexity | 4 |
Total Lines | 73 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | import pytest |
||
2 | import random |
||
3 | import numpy as np |
||
4 | |||
5 | from gradient_free_optimizers.optimizers.core_optimizer.converter import Converter |
||
6 | |||
7 | from ._parametrize import optimizers |
||
8 | |||
9 | |||
10 | def objective_function(para): |
||
11 | return -(para["x1"] + para["x1"]) |
||
12 | |||
13 | |||
14 | search_space1 = { |
||
15 | "x1": np.array([1]), |
||
16 | "x2": np.arange(-10, 10, 1), |
||
17 | } |
||
18 | |||
19 | search_space2 = { |
||
20 | "x1": np.arange(-10, 10, 1), |
||
21 | "x2": np.array([1]), |
||
22 | } |
||
23 | |||
24 | search_space3 = { |
||
25 | "x1": np.arange(-10, 10, 1), |
||
26 | "x2": np.array([1]), |
||
27 | "x3": np.array([1]), |
||
28 | } |
||
29 | |||
30 | search_space4 = { |
||
31 | "x1": np.arange(-10, 10, 1), |
||
32 | "x2": np.array([1]), |
||
33 | "x3": np.array([1]), |
||
34 | "x4": np.array([1]), |
||
35 | } |
||
36 | |||
37 | |||
38 | objective_para = ( |
||
39 | "search_space", |
||
40 | [ |
||
41 | (search_space1), |
||
42 | (search_space2), |
||
43 | (search_space3), |
||
44 | (search_space4), |
||
45 | ], |
||
46 | ) |
||
47 | |||
48 | |||
49 | @pytest.mark.parametrize(*objective_para) |
||
50 | @pytest.mark.parametrize(*optimizers) |
||
51 | def test_backend_api_0(Optimizer, search_space): |
||
52 | opt = Optimizer(search_space) |
||
53 | |||
54 | conv = Converter(search_space) |
||
55 | |||
56 | n_inits = len(opt.init.init_positions_l) |
||
57 | |||
58 | for _ in range(n_inits): |
||
59 | pos = opt.init_pos() |
||
60 | value = conv.position2value(pos) |
||
61 | para = conv.value2para(value) |
||
62 | score = objective_function(para) |
||
63 | opt.evaluate(score) |
||
64 | |||
65 | opt.finish_initialization() |
||
66 | |||
67 | for _ in range(20): |
||
68 | pos = opt.iterate() |
||
69 | value = conv.position2value(pos) |
||
70 | para = conv.value2para(value) |
||
71 | score = objective_function(para) |
||
72 | opt.evaluate(score) |
||
73 |