1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import time |
6
|
|
|
|
7
|
|
|
from ._progress_bar import ProgressBarLVL0, ProgressBarLVL1 |
8
|
|
|
from ._times_tracker import TimesTracker |
9
|
|
|
from ._search_statistics import SearchStatistics |
10
|
|
|
from ._memory import Memory |
11
|
|
|
from ._print_info import print_info |
12
|
|
|
from ._stop_run import StopRun |
13
|
|
|
from ._results_manager import ResultsManager |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
class Search(TimesTracker, SearchStatistics): |
17
|
|
|
def __init__(self): |
18
|
|
|
super().__init__() |
19
|
|
|
|
20
|
|
|
self.optimizers = [] |
21
|
|
|
self.new_results_list = [] |
22
|
|
|
self.all_results_list = [] |
23
|
|
|
|
24
|
|
|
self.score_l = [] |
25
|
|
|
self.pos_l = [] |
26
|
|
|
self.random_seed = None |
27
|
|
|
|
28
|
|
|
self.results_mang = ResultsManager() |
29
|
|
|
|
30
|
|
|
@TimesTracker.eval_time |
31
|
|
|
def _score(self, pos): |
32
|
|
|
return self.score(pos) |
33
|
|
|
|
34
|
|
|
@TimesTracker.iter_time |
35
|
|
|
def _initialization(self): |
36
|
|
|
self.best_score = self.p_bar.score_best |
37
|
|
|
|
38
|
|
|
init_pos = self.init_pos() |
39
|
|
|
|
40
|
|
|
score_new = self._score(init_pos) |
41
|
|
|
self.evaluate_init(score_new) |
42
|
|
|
|
43
|
|
|
self.pos_l.append(init_pos) |
44
|
|
|
self.score_l.append(score_new) |
45
|
|
|
|
46
|
|
|
self.p_bar.update(score_new, init_pos, self.nth_iter) |
47
|
|
|
|
48
|
|
|
self.n_init_total += 1 |
49
|
|
|
self.n_init_search += 1 |
50
|
|
|
|
51
|
|
|
self.stop.update(self.p_bar.score_best, self.score_l) |
52
|
|
|
|
53
|
|
|
@TimesTracker.iter_time |
54
|
|
|
def _iteration(self): |
55
|
|
|
self.best_score = self.p_bar.score_best |
56
|
|
|
|
57
|
|
|
pos_new = self.iterate() |
58
|
|
|
|
59
|
|
|
score_new = self._score(pos_new) |
60
|
|
|
self.evaluate(score_new) |
61
|
|
|
|
62
|
|
|
self.pos_l.append(pos_new) |
63
|
|
|
self.score_l.append(score_new) |
64
|
|
|
|
65
|
|
|
self.p_bar.update(score_new, pos_new, self.nth_iter) |
66
|
|
|
|
67
|
|
|
self.n_iter_total += 1 |
68
|
|
|
self.n_iter_search += 1 |
69
|
|
|
|
70
|
|
|
self.stop.update(self.p_bar.score_best, self.score_l) |
71
|
|
|
|
72
|
|
|
def search( |
73
|
|
|
self, |
74
|
|
|
objective_function, |
75
|
|
|
n_iter, |
76
|
|
|
max_time=None, |
77
|
|
|
max_score=None, |
78
|
|
|
early_stopping=None, |
79
|
|
|
memory=True, |
80
|
|
|
memory_warm_start=None, |
81
|
|
|
verbosity=["progress_bar", "print_results", "print_times"], |
82
|
|
|
optimum = "maximum", |
83
|
|
|
): |
84
|
|
|
self.optimum = optimum |
85
|
|
|
self.init_search( |
86
|
|
|
objective_function, |
87
|
|
|
n_iter, |
88
|
|
|
max_time, |
89
|
|
|
max_score, |
90
|
|
|
early_stopping, |
91
|
|
|
memory, |
92
|
|
|
memory_warm_start, |
93
|
|
|
verbosity, |
94
|
|
|
) |
95
|
|
|
|
96
|
|
|
for nth_trial in range(n_iter): |
97
|
|
|
self.search_step(nth_trial) |
98
|
|
|
if self.stop.check(): |
99
|
|
|
break |
100
|
|
|
|
101
|
|
|
self.finish_search() |
102
|
|
|
|
103
|
|
|
@SearchStatistics.init_stats |
104
|
|
|
def init_search( |
105
|
|
|
self, |
106
|
|
|
objective_function, |
107
|
|
|
n_iter, |
108
|
|
|
max_time, |
109
|
|
|
max_score, |
110
|
|
|
early_stopping, |
111
|
|
|
memory, |
112
|
|
|
memory_warm_start, |
113
|
|
|
verbosity, |
114
|
|
|
): |
115
|
|
|
if getattr(self, "optimum", "maximum") == "minimum": |
116
|
|
|
self.objective_function = lambda pos: -objective_function(pos) |
117
|
|
|
else: |
118
|
|
|
self.objective_function = objective_function |
119
|
|
|
self.n_iter = n_iter |
120
|
|
|
self.max_time = max_time |
121
|
|
|
self.max_score = max_score |
122
|
|
|
self.early_stopping = early_stopping |
123
|
|
|
self.memory = memory |
124
|
|
|
self.memory_warm_start = memory_warm_start |
125
|
|
|
self.verbosity = verbosity |
126
|
|
|
|
127
|
|
|
self.results_mang.conv = self.conv |
128
|
|
|
|
129
|
|
|
if self.verbosity is False: |
130
|
|
|
self.verbosity = [] |
131
|
|
|
|
132
|
|
|
start_time = time.time() |
133
|
|
|
self.stop = StopRun( |
134
|
|
|
start_time, self.max_time, self.max_score, self.early_stopping |
135
|
|
|
) |
136
|
|
|
|
137
|
|
|
if "progress_bar" in self.verbosity: |
138
|
|
|
self.p_bar = ProgressBarLVL1( |
139
|
|
|
self.nth_process, self.n_iter, self.objective_function |
140
|
|
|
) |
141
|
|
|
else: |
142
|
|
|
self.p_bar = ProgressBarLVL0( |
143
|
|
|
self.nth_process, self.n_iter, self.objective_function |
144
|
|
|
) |
145
|
|
|
|
146
|
|
|
self.mem = Memory(self.memory_warm_start, self.conv, memory=self.memory) |
147
|
|
|
|
148
|
|
|
if self.memory not in [False, None]: |
149
|
|
|
self.score = self.results_mang.score( |
150
|
|
|
self.mem.memory(self.objective_function) |
151
|
|
|
) |
152
|
|
|
else: |
153
|
|
|
self.score = self.results_mang.score(self.objective_function) |
154
|
|
|
|
155
|
|
|
self.n_inits_norm = min( |
156
|
|
|
(self.init.n_inits - self.n_init_total), self.n_iter |
157
|
|
|
) |
158
|
|
|
|
159
|
|
|
def finish_search(self): |
160
|
|
|
self.search_data = self.results_mang.search_data |
161
|
|
|
|
162
|
|
|
self.best_score = self.p_bar.score_best |
163
|
|
|
self.best_value = self.conv.position2value(self.p_bar.pos_best) |
164
|
|
|
self.best_para = self.conv.value2para(self.best_value) |
165
|
|
|
|
166
|
|
|
if self.memory not in [False, None]: |
167
|
|
|
self.memory_dict = self.mem.memory_dict |
168
|
|
|
else: |
169
|
|
|
self.memory_dict = {} |
170
|
|
|
|
171
|
|
|
self.p_bar.close() |
172
|
|
|
|
173
|
|
|
print_info( |
174
|
|
|
self.verbosity, |
175
|
|
|
self.objective_function, |
176
|
|
|
self.best_score, |
177
|
|
|
self.best_para, |
178
|
|
|
self.eval_times, |
179
|
|
|
self.iter_times, |
180
|
|
|
self.n_iter, |
181
|
|
|
self.random_seed, |
182
|
|
|
) |
183
|
|
|
|
184
|
|
|
def search_step(self, nth_iter): |
185
|
|
|
self.nth_iter = nth_iter |
186
|
|
|
|
187
|
|
|
if self.nth_iter < self.n_inits_norm: |
188
|
|
|
self._initialization() |
189
|
|
|
|
190
|
|
|
if self.nth_iter == self.n_init_search: |
191
|
|
|
self.finish_initialization() |
192
|
|
|
|
193
|
|
|
if self.n_init_search <= self.nth_iter < self.n_iter: |
194
|
|
|
self._iteration() |
195
|
|
|
|