1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
from scipy.stats import norm |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
from .smbo import SMBO |
10
|
|
|
from .surrogate_models import ( |
11
|
|
|
GPR_linear, |
12
|
|
|
GPR, |
13
|
|
|
) |
14
|
|
|
from .acquisition_function import ExpectedImprovement |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
gaussian_process = {"gp_nonlinear": GPR(), "gp_linear": GPR_linear()} |
18
|
|
|
|
19
|
|
|
|
20
|
|
|
def normalize(array): |
21
|
|
|
array_min = array.min() |
22
|
|
|
array_max = array.max() |
23
|
|
|
range_ = array_max - array_min |
24
|
|
|
|
25
|
|
|
if range_ == 0: |
26
|
|
|
return np.random.random_sample(array.shape) |
27
|
|
|
else: |
28
|
|
|
return (array - array_min) / range_ |
29
|
|
|
|
30
|
|
|
|
31
|
|
|
class BayesianOptimizer(SMBO): |
32
|
|
|
name = "Bayesian Optimization" |
33
|
|
|
_name_ = "bayesian_optimization" |
34
|
|
|
__name__ = "BayesianOptimizer" |
35
|
|
|
|
36
|
|
|
optimizer_type = "sequential" |
37
|
|
|
computationally_expensive = True |
38
|
|
|
|
39
|
|
|
def __init__( |
40
|
|
|
self, |
41
|
|
|
search_space, |
42
|
|
|
initialize={"grid": 4, "random": 2, "vertices": 4}, |
43
|
|
|
constraints=[], |
44
|
|
|
random_state=None, |
45
|
|
|
rand_rest_p=0, |
46
|
|
|
nth_process=None, |
47
|
|
|
warm_start_smbo=None, |
48
|
|
|
max_sample_size=10000000, |
49
|
|
|
sampling={"random": 1000000}, |
50
|
|
|
replacement=True, |
51
|
|
|
gpr=gaussian_process["gp_nonlinear"], |
52
|
|
|
xi=0.03, |
53
|
|
|
): |
54
|
|
|
super().__init__( |
55
|
|
|
search_space=search_space, |
56
|
|
|
initialize=initialize, |
57
|
|
|
constraints=constraints, |
58
|
|
|
random_state=random_state, |
59
|
|
|
rand_rest_p=rand_rest_p, |
60
|
|
|
nth_process=nth_process, |
61
|
|
|
warm_start_smbo=warm_start_smbo, |
62
|
|
|
max_sample_size=max_sample_size, |
63
|
|
|
sampling=sampling, |
64
|
|
|
replacement=replacement, |
65
|
|
|
) |
66
|
|
|
|
67
|
|
|
self.gpr = gpr |
68
|
|
|
self.regr = gpr |
69
|
|
|
self.xi = xi |
70
|
|
|
|
71
|
|
|
def finish_initialization(self): |
72
|
|
|
self.all_pos_comb = self._all_possible_pos() |
73
|
|
|
return super().finish_initialization() |
74
|
|
|
|
75
|
|
|
def _expected_improvement(self): |
76
|
|
|
self.pos_comb = self._sampling(self.all_pos_comb) |
77
|
|
|
|
78
|
|
|
acqu_func = ExpectedImprovement(self.regr, self.pos_comb, self.xi) |
79
|
|
|
return acqu_func.calculate(self.X_sample, self.Y_sample) |
80
|
|
|
|
81
|
|
|
def _training(self): |
82
|
|
|
X_sample = np.array(self.X_sample) |
83
|
|
|
Y_sample = np.array(self.Y_sample) |
84
|
|
|
|
85
|
|
|
Y_sample = normalize(Y_sample).reshape(-1, 1) |
86
|
|
|
self.regr.fit(X_sample, Y_sample) |
87
|
|
|
|