1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
|
7
|
|
|
from ..base_optimizer import BaseOptimizer |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
def max_list_idx(list_): |
11
|
|
|
max_item = max(list_) |
12
|
|
|
max_item_idx = [i for i, j in enumerate(list_) if j == max_item] |
13
|
|
|
return max_item_idx[-1:][0] |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
class HillClimbingOptimizer(BaseOptimizer): |
17
|
|
|
name = "Hill Climbing" |
18
|
|
|
_name_ = "hill_climbing" |
19
|
|
|
__name__ = "HillClimbingOptimizer" |
20
|
|
|
|
21
|
|
|
optimizer_type = "local" |
22
|
|
|
computationally_expensive = False |
23
|
|
|
|
24
|
|
|
def __init__( |
25
|
|
|
self, |
26
|
|
|
search_space, |
27
|
|
|
initialize={"grid": 4, "random": 2, "vertices": 4}, |
28
|
|
|
constraints=[], |
29
|
|
|
random_state=None, |
30
|
|
|
rand_rest_p=0, |
31
|
|
|
nth_process=None, |
32
|
|
|
epsilon=0.03, |
33
|
|
|
distribution="normal", |
34
|
|
|
n_neighbours=3, |
35
|
|
|
): |
36
|
|
|
|
37
|
|
|
super().__init__( |
38
|
|
|
search_space=search_space, |
39
|
|
|
initialize=initialize, |
40
|
|
|
constraints=constraints, |
41
|
|
|
random_state=random_state, |
42
|
|
|
rand_rest_p=rand_rest_p, |
43
|
|
|
nth_process=nth_process, |
44
|
|
|
) |
45
|
|
|
self.epsilon = epsilon |
46
|
|
|
self.distribution = distribution |
47
|
|
|
self.n_neighbours = n_neighbours |
48
|
|
|
|
49
|
|
|
@BaseOptimizer.track_new_pos |
50
|
|
|
@BaseOptimizer.random_iteration |
51
|
|
|
def iterate(self): |
52
|
|
|
return self.move_climb( |
53
|
|
|
self.pos_current, |
54
|
|
|
epsilon=self.epsilon, |
55
|
|
|
distribution=self.distribution, |
56
|
|
|
) |
57
|
|
|
|
58
|
|
|
@BaseOptimizer.track_new_score |
59
|
|
|
def evaluate(self, score_new): |
60
|
|
|
BaseOptimizer.evaluate(self, score_new) |
61
|
|
|
if len(self.scores_valid) == 0: |
62
|
|
|
return |
63
|
|
|
|
64
|
|
|
modZero = self.nth_trial % self.n_neighbours == 0 |
65
|
|
|
if modZero: |
66
|
|
|
score_new_list_temp = self.scores_valid[-self.n_neighbours :] |
67
|
|
|
pos_new_list_temp = self.positions_valid[-self.n_neighbours :] |
68
|
|
|
|
69
|
|
|
idx = max_list_idx(score_new_list_temp) |
70
|
|
|
score = score_new_list_temp[idx] |
71
|
|
|
pos = pos_new_list_temp[idx] |
72
|
|
|
|
73
|
|
|
self._eval2current(pos, score) |
74
|
|
|
self._eval2best(pos, score) |
75
|
|
|
|