Total Complexity | 5 |
Total Lines | 61 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | # Author: Simon Blanke |
||
2 | # Email: [email protected] |
||
3 | # License: MIT License |
||
4 | |||
5 | import numpy as np |
||
6 | |||
7 | from ..base_optimizer import BaseOptimizer |
||
8 | |||
9 | |||
10 | class OrthogonalGridSearchOptimizer(BaseOptimizer): |
||
11 | def __init__( |
||
12 | self, |
||
13 | search_space, |
||
14 | initialize={"grid": 4, "random": 2, "vertices": 4}, |
||
15 | constraints=[], |
||
16 | random_state=None, |
||
17 | rand_rest_p=0, |
||
18 | nth_process=None, |
||
19 | step_size=1, |
||
20 | ): |
||
21 | super().__init__( |
||
22 | search_space=search_space, |
||
23 | initialize=initialize, |
||
24 | constraints=constraints, |
||
25 | random_state=random_state, |
||
26 | rand_rest_p=rand_rest_p, |
||
27 | nth_process=nth_process, |
||
28 | ) |
||
29 | |||
30 | self.step_size = step_size |
||
31 | |||
32 | def grid_move(self): |
||
33 | mod_tmp = self.nth_trial * self.step_size + int( |
||
34 | self.nth_trial * self.step_size / self.conv.search_space_size |
||
35 | ) |
||
36 | div_tmp = self.nth_trial * self.step_size + int( |
||
37 | self.nth_trial * self.step_size / self.conv.search_space_size |
||
38 | ) |
||
39 | flipped_new_pos = [] |
||
40 | |||
41 | for dim_size in self.conv.dim_sizes: |
||
42 | mod = mod_tmp % dim_size |
||
43 | div = int(div_tmp / dim_size) |
||
44 | |||
45 | flipped_new_pos.append(mod) |
||
46 | |||
47 | mod_tmp = div |
||
48 | div_tmp = div |
||
49 | |||
50 | return np.array(flipped_new_pos) |
||
51 | |||
52 | @BaseOptimizer.track_new_pos |
||
53 | def iterate(self): |
||
54 | pos_new = self.grid_move() |
||
55 | pos_new = self.conv2pos(pos_new) |
||
56 | return pos_new |
||
57 | |||
58 | @BaseOptimizer.track_new_score |
||
59 | def evaluate(self, score_new): |
||
60 | BaseOptimizer.evaluate(self, score_new) |
||
61 |