| Total Complexity | 5 |
| Total Lines | 61 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | # Author: Simon Blanke |
||
| 2 | # Email: [email protected] |
||
| 3 | # License: MIT License |
||
| 4 | |||
| 5 | import numpy as np |
||
| 6 | |||
| 7 | from ..base_optimizer import BaseOptimizer |
||
| 8 | |||
| 9 | |||
| 10 | class OrthogonalGridSearchOptimizer(BaseOptimizer): |
||
| 11 | def __init__( |
||
| 12 | self, |
||
| 13 | search_space, |
||
| 14 | initialize={"grid": 4, "random": 2, "vertices": 4}, |
||
| 15 | constraints=[], |
||
| 16 | random_state=None, |
||
| 17 | rand_rest_p=0, |
||
| 18 | nth_process=None, |
||
| 19 | step_size=1, |
||
| 20 | ): |
||
| 21 | super().__init__( |
||
| 22 | search_space=search_space, |
||
| 23 | initialize=initialize, |
||
| 24 | constraints=constraints, |
||
| 25 | random_state=random_state, |
||
| 26 | rand_rest_p=rand_rest_p, |
||
| 27 | nth_process=nth_process, |
||
| 28 | ) |
||
| 29 | |||
| 30 | self.step_size = step_size |
||
| 31 | |||
| 32 | def grid_move(self): |
||
| 33 | mod_tmp = self.nth_trial * self.step_size + int( |
||
| 34 | self.nth_trial * self.step_size / self.conv.search_space_size |
||
| 35 | ) |
||
| 36 | div_tmp = self.nth_trial * self.step_size + int( |
||
| 37 | self.nth_trial * self.step_size / self.conv.search_space_size |
||
| 38 | ) |
||
| 39 | flipped_new_pos = [] |
||
| 40 | |||
| 41 | for dim_size in self.conv.dim_sizes: |
||
| 42 | mod = mod_tmp % dim_size |
||
| 43 | div = int(div_tmp / dim_size) |
||
| 44 | |||
| 45 | flipped_new_pos.append(mod) |
||
| 46 | |||
| 47 | mod_tmp = div |
||
| 48 | div_tmp = div |
||
| 49 | |||
| 50 | return np.array(flipped_new_pos) |
||
| 51 | |||
| 52 | @BaseOptimizer.track_new_pos |
||
| 53 | def iterate(self): |
||
| 54 | pos_new = self.grid_move() |
||
| 55 | pos_new = self.conv2pos(pos_new) |
||
| 56 | return pos_new |
||
| 57 | |||
| 58 | @BaseOptimizer.track_new_score |
||
| 59 | def evaluate(self, score_new): |
||
| 60 | BaseOptimizer.evaluate(self, score_new) |
||
| 61 |