1
|
|
|
# Author: ... |
2
|
|
|
# Email: ... |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
|
7
|
|
|
try: |
8
|
|
|
from fractions import gcd |
9
|
|
|
except: |
10
|
|
|
from math import gcd |
11
|
|
|
|
12
|
|
|
from ..base_optimizer import BaseOptimizer |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
class DiagonalGridSearchOptimizer(BaseOptimizer): |
16
|
|
|
def __init__( |
17
|
|
|
self, |
18
|
|
|
search_space, |
19
|
|
|
initialize={"grid": 4, "random": 2, "vertices": 4}, |
20
|
|
|
constraints=[], |
21
|
|
|
random_state=None, |
22
|
|
|
rand_rest_p=0, |
23
|
|
|
nth_process=None, |
24
|
|
|
step_size=1, |
25
|
|
|
): |
26
|
|
|
super().__init__( |
27
|
|
|
search_space=search_space, |
28
|
|
|
initialize=initialize, |
29
|
|
|
constraints=constraints, |
30
|
|
|
random_state=random_state, |
31
|
|
|
rand_rest_p=rand_rest_p, |
32
|
|
|
nth_process=nth_process, |
33
|
|
|
) |
34
|
|
|
self.initial_position = np.zeros((self.conv.n_dimensions,), dtype=int) |
35
|
|
|
# current position mapped in [|0,search_space_size-1|] (1D) |
36
|
|
|
self.high_dim_pointer = 0 |
37
|
|
|
# direction is a generator of our search space (prime with search_space_size) |
38
|
|
|
self.direction_calc = None |
39
|
|
|
# step_size describes how many steps of size direction are jumped at each iteration |
40
|
|
|
self.step_size = step_size |
41
|
|
|
|
42
|
|
|
def get_direction(self): |
43
|
|
|
""" |
44
|
|
|
Aim here is to generate a prime number of the search space size we call our direction. |
45
|
|
|
As direction is prime with the search space size, we know it is |
46
|
|
|
a generator of Z/(search_space_size*Z). |
47
|
|
|
""" |
48
|
|
|
n_dims = self.conv.n_dimensions |
49
|
|
|
search_space_size = self.conv.search_space_size |
50
|
|
|
|
51
|
|
|
# Find prime number near search_space_size ** (1/n_dims) |
52
|
|
|
dim_root = int(np.round(np.power(search_space_size, 1 / n_dims))) |
53
|
|
|
is_prime = False |
54
|
|
|
|
55
|
|
|
while not is_prime: |
56
|
|
|
if gcd(int(search_space_size), int(dim_root)) == 1: |
57
|
|
|
is_prime = True |
58
|
|
|
else: |
59
|
|
|
dim_root += -1 |
60
|
|
|
|
61
|
|
|
return dim_root |
62
|
|
|
|
63
|
|
|
def grid_move(self): |
64
|
|
|
""" |
65
|
|
|
We convert our pointer of Z/(search_space_size * Z) in a position of our search space. |
66
|
|
|
This algorithm uses a bijection from Z/(search_space_size * Z) -> (Z/dim_1*Z)x...x(Z/dim_n*Z). |
67
|
|
|
""" |
68
|
|
|
new_pos = [] |
69
|
|
|
dim_sizes = self.conv.dim_sizes |
70
|
|
|
pointer = self.high_dim_pointer |
71
|
|
|
|
72
|
|
|
# The coordinate of our new position for each dimension is |
73
|
|
|
# the quotient of the pointer by the product of remaining dimensions |
74
|
|
|
# Describes a bijection from Z/search_space_size*Z -> (Z/dim_1*Z)x...x(Z/dim_n*Z) |
75
|
|
|
for dim in range(len(dim_sizes) - 1): |
76
|
|
|
new_pos.append( |
77
|
|
|
pointer // np.prod(dim_sizes[dim + 1 :]) % dim_sizes[dim] |
78
|
|
|
) |
79
|
|
|
pointer = pointer % np.prod(dim_sizes[dim + 1 :]) |
80
|
|
|
new_pos.append(pointer) |
81
|
|
|
|
82
|
|
|
return np.array(new_pos) |
83
|
|
|
|
84
|
|
|
@BaseOptimizer.track_new_pos |
85
|
|
|
def iterate(self): |
86
|
|
|
# while loop for constraint opt |
87
|
|
|
while True: |
88
|
|
|
# If this is the first iteration: |
89
|
|
|
# Generate the direction and return initial_position |
90
|
|
|
if self.direction_calc is None: |
91
|
|
|
self.direction_calc = self.get_direction() |
92
|
|
|
|
93
|
|
|
pos_new = self.initial_position |
94
|
|
|
if self.conv.not_in_constraint(pos_new): |
95
|
|
|
return pos_new |
96
|
|
|
else: |
97
|
|
|
return self.move_random() |
98
|
|
|
|
99
|
|
|
# If this is not the first iteration: |
100
|
|
|
# Update high_dim_pointer by taking a step of size step_size * direction. |
101
|
|
|
|
102
|
|
|
# Multiple passes are needed in order to observe the entire search space |
103
|
|
|
# depending on the step_size parameter. |
104
|
|
|
_, current_pass = ( |
105
|
|
|
self.nth_trial, |
106
|
|
|
self.high_dim_pointer % self.step_size, |
107
|
|
|
) |
108
|
|
|
current_pass_finished = ( |
109
|
|
|
(self.nth_trial + 1) |
110
|
|
|
* self.step_size |
111
|
|
|
// self.conv.search_space_size |
112
|
|
|
> self.nth_trial * self.step_size // self.conv.search_space_size |
113
|
|
|
) |
114
|
|
|
# Begin the next pass if current is finished. |
115
|
|
|
if current_pass_finished: |
116
|
|
|
self.high_dim_pointer = current_pass + 1 |
117
|
|
|
else: |
118
|
|
|
# Otherwise update pointer in Z/(search_space_size*Z) |
119
|
|
|
# using the prime step direction and step_size. |
120
|
|
|
self.high_dim_pointer = ( |
121
|
|
|
self.high_dim_pointer + self.step_size * self.direction_calc |
122
|
|
|
) % self.conv.search_space_size |
123
|
|
|
|
124
|
|
|
# Compute corresponding position in our search space. |
125
|
|
|
|
126
|
|
|
pos_new = self.grid_move() |
127
|
|
|
pos_new = self.conv2pos(pos_new) |
128
|
|
|
|
129
|
|
|
if self.conv.not_in_constraint(pos_new): |
130
|
|
|
return pos_new |
131
|
|
|
|
132
|
|
|
@BaseOptimizer.track_new_score |
133
|
|
|
def evaluate(self, score_new): |
134
|
|
|
BaseOptimizer.evaluate(self, score_new) |
135
|
|
|
|