1
|
|
|
from keras.models import Sequential |
2
|
|
|
from keras.layers import ( |
3
|
|
|
Dense, |
4
|
|
|
Conv2D, |
5
|
|
|
MaxPooling2D, |
6
|
|
|
Flatten, |
7
|
|
|
Dropout, |
8
|
|
|
Activation, |
9
|
|
|
) |
10
|
|
|
from keras.datasets import cifar10 |
11
|
|
|
from keras.utils import to_categorical |
12
|
|
|
|
13
|
|
|
from gradient_free_optimizers import BayesianOptimizer |
14
|
|
|
|
15
|
|
|
import numpy as np |
16
|
|
|
|
17
|
|
|
(X_train, y_train), (X_test, y_test) = cifar10.load_data() |
18
|
|
|
|
19
|
|
|
y_train = to_categorical(y_train, 10) |
20
|
|
|
y_test = to_categorical(y_test, 10) |
21
|
|
|
|
22
|
|
|
X_train = X_train[0:1000] |
23
|
|
|
y_train = y_train[0:1000] |
24
|
|
|
|
25
|
|
|
X_test = X_test[0:1000] |
26
|
|
|
y_test = y_test[0:1000] |
27
|
|
|
|
28
|
|
|
|
29
|
|
|
def cnn(para): |
30
|
|
|
nn = Sequential() |
31
|
|
|
nn.add( |
32
|
|
|
Conv2D( |
33
|
|
|
para["filter.0"], |
34
|
|
|
(3, 3), |
35
|
|
|
padding="same", |
36
|
|
|
input_shape=X_train.shape[1:], |
37
|
|
|
) |
38
|
|
|
) |
39
|
|
|
nn.add(Activation("relu")) |
40
|
|
|
nn.add(Conv2D(para["filter.0"], (3, 3))) |
41
|
|
|
nn.add(Activation("relu")) |
42
|
|
|
nn.add(MaxPooling2D(pool_size=(2, 2))) |
43
|
|
|
nn.add(Dropout(0.25)) |
44
|
|
|
|
45
|
|
|
nn.add(Conv2D(para["filter.0"], (3, 3), padding="same")) |
46
|
|
|
nn.add(Activation("relu")) |
47
|
|
|
nn.add(Conv2D(para["filter.0"], (3, 3))) |
48
|
|
|
nn.add(Activation("relu")) |
49
|
|
|
nn.add(MaxPooling2D(pool_size=(2, 2))) |
50
|
|
|
nn.add(Dropout(0.25)) |
51
|
|
|
|
52
|
|
|
nn.add(Flatten()) |
53
|
|
|
nn.add(Dense(para["dense.0"])) |
54
|
|
|
nn.add(Activation("relu")) |
55
|
|
|
nn.add(Dropout(0.5)) |
56
|
|
|
nn.add(Dense(10)) |
57
|
|
|
nn.add(Activation("softmax")) |
58
|
|
|
|
59
|
|
|
nn.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) |
60
|
|
|
nn.fit(X_train, y_train, epochs=5, batch_size=256) |
61
|
|
|
|
62
|
|
|
_, score = nn.evaluate(x=X_test, y=y_test) |
63
|
|
|
|
64
|
|
|
return score |
65
|
|
|
|
66
|
|
|
|
67
|
|
|
search_space = { |
68
|
|
|
"filter.0": np.array([16, 32, 64, 128]), |
69
|
|
|
"dense.0": np.arange(100, 1000, 100), |
70
|
|
|
} |
71
|
|
|
|
72
|
|
|
|
73
|
|
|
opt = BayesianOptimizer(search_space) |
74
|
|
|
opt.search(cnn, n_iter=5) |
75
|
|
|
|