1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import pytest |
6
|
|
|
import numpy as np |
7
|
|
|
|
8
|
|
|
from gradient_free_optimizers import SimulatedAnnealingOptimizer |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
def objective_function(para): |
12
|
|
|
score = -para["x1"] * para["x1"] |
13
|
|
|
return score |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
search_space = { |
17
|
|
|
"x1": np.arange(0, 10, 1), |
18
|
|
|
} |
19
|
|
|
|
20
|
|
|
|
21
|
|
|
n_iter = 1000 |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
def test_start_temp_0(): |
25
|
|
|
n_initialize = 1 |
26
|
|
|
|
27
|
|
|
start_temp_0 = 0 |
28
|
|
|
start_temp_1 = 0.1 |
29
|
|
|
start_temp_10 = 1 |
30
|
|
|
start_temp_100 = 100 |
31
|
|
|
start_temp_inf = np.inf |
32
|
|
|
|
33
|
|
|
epsilon = 1 / np.inf |
34
|
|
|
|
35
|
|
|
opt = SimulatedAnnealingOptimizer( |
36
|
|
|
search_space, |
37
|
|
|
start_temp=start_temp_0, |
38
|
|
|
epsilon=epsilon, |
39
|
|
|
initialize={"random": n_initialize}, |
40
|
|
|
) |
41
|
|
|
opt.search(objective_function, n_iter=n_iter) |
42
|
|
|
n_transitions_0 = opt.n_transitions |
43
|
|
|
|
44
|
|
|
opt = SimulatedAnnealingOptimizer( |
45
|
|
|
search_space, |
46
|
|
|
start_temp=start_temp_1, |
47
|
|
|
epsilon=epsilon, |
48
|
|
|
initialize={"random": n_initialize}, |
49
|
|
|
) |
50
|
|
|
opt.search(objective_function, n_iter=n_iter) |
51
|
|
|
n_transitions_1 = opt.n_transitions |
52
|
|
|
|
53
|
|
|
opt = SimulatedAnnealingOptimizer( |
54
|
|
|
search_space, |
55
|
|
|
start_temp=start_temp_10, |
56
|
|
|
epsilon=epsilon, |
57
|
|
|
initialize={"random": n_initialize}, |
58
|
|
|
) |
59
|
|
|
opt.search(objective_function, n_iter=n_iter) |
60
|
|
|
n_transitions_10 = opt.n_transitions |
61
|
|
|
|
62
|
|
|
opt = SimulatedAnnealingOptimizer( |
63
|
|
|
search_space, |
64
|
|
|
start_temp=start_temp_100, |
65
|
|
|
epsilon=epsilon, |
66
|
|
|
initialize={"random": n_initialize}, |
67
|
|
|
) |
68
|
|
|
opt.search(objective_function, n_iter=n_iter) |
69
|
|
|
n_transitions_100 = opt.n_transitions |
70
|
|
|
|
71
|
|
|
opt = SimulatedAnnealingOptimizer( |
72
|
|
|
search_space, |
73
|
|
|
start_temp=start_temp_inf, |
74
|
|
|
epsilon=epsilon, |
75
|
|
|
initialize={"random": n_initialize}, |
76
|
|
|
) |
77
|
|
|
opt.search(objective_function, n_iter=n_iter) |
78
|
|
|
n_transitions_inf = opt.n_transitions |
79
|
|
|
|
80
|
|
|
print("\n n_transitions_0", n_transitions_0) |
81
|
|
|
print("\n n_transitions_1", n_transitions_1) |
82
|
|
|
print("\n n_transitions_10", n_transitions_10) |
83
|
|
|
print("\n n_transitions_100", n_transitions_100) |
84
|
|
|
print("\n n_transitions_inf", n_transitions_inf) |
85
|
|
|
|
86
|
|
|
assert n_transitions_0 == start_temp_0 |
87
|
|
|
assert ( |
88
|
|
|
n_transitions_1 |
89
|
|
|
== n_transitions_10 |
90
|
|
|
== n_transitions_100 |
91
|
|
|
== n_transitions_inf |
92
|
|
|
== n_iter - n_initialize |
93
|
|
|
) |
94
|
|
|
|
95
|
|
|
|
96
|
|
|
def test_start_temp_1(): |
97
|
|
|
n_initialize = 1 |
98
|
|
|
|
99
|
|
|
start_temp_0 = 0 |
100
|
|
|
start_temp_1 = 0.001 |
101
|
|
|
start_temp_100 = 10000 |
102
|
|
|
|
103
|
|
|
epsilon = 0.03 |
104
|
|
|
|
105
|
|
|
opt = SimulatedAnnealingOptimizer( |
106
|
|
|
search_space, |
107
|
|
|
start_temp=start_temp_0, |
108
|
|
|
epsilon=epsilon, |
109
|
|
|
initialize={"random": n_initialize}, |
110
|
|
|
) |
111
|
|
|
opt.search(objective_function, n_iter=n_iter) |
112
|
|
|
n_transitions_0 = opt.n_transitions |
113
|
|
|
|
114
|
|
|
opt = SimulatedAnnealingOptimizer( |
115
|
|
|
search_space, |
116
|
|
|
start_temp=start_temp_1, |
117
|
|
|
epsilon=epsilon, |
118
|
|
|
initialize={"random": n_initialize}, |
119
|
|
|
) |
120
|
|
|
opt.search(objective_function, n_iter=n_iter) |
121
|
|
|
n_transitions_1 = opt.n_transitions |
122
|
|
|
|
123
|
|
|
opt = SimulatedAnnealingOptimizer( |
124
|
|
|
search_space, |
125
|
|
|
start_temp=start_temp_100, |
126
|
|
|
epsilon=epsilon, |
127
|
|
|
initialize={"random": n_initialize}, |
128
|
|
|
) |
129
|
|
|
opt.search(objective_function, n_iter=n_iter) |
130
|
|
|
n_transitions_100 = opt.n_transitions |
131
|
|
|
|
132
|
|
|
print("\n n_transitions_0", n_transitions_0) |
133
|
|
|
print("\n n_transitions_1", n_transitions_1) |
134
|
|
|
print("\n n_transitions_100", n_transitions_100) |
135
|
|
|
|
136
|
|
|
assert n_transitions_0 == start_temp_0 |
137
|
|
|
assert n_transitions_1 < n_transitions_100 |
138
|
|
|
|
139
|
|
|
|
140
|
|
|
def test_annealing_rate_0(): |
141
|
|
|
n_initialize = 1 |
142
|
|
|
|
143
|
|
|
annealing_rate_0 = 0 |
144
|
|
|
annealing_rate_1 = 0.1 |
145
|
|
|
annealing_rate_100 = 0.99 |
146
|
|
|
|
147
|
|
|
epsilon = 0.03 |
148
|
|
|
|
149
|
|
|
opt = SimulatedAnnealingOptimizer( |
150
|
|
|
search_space, |
151
|
|
|
annealing_rate=annealing_rate_0, |
152
|
|
|
epsilon=epsilon, |
153
|
|
|
initialize={"random": n_initialize}, |
154
|
|
|
) |
155
|
|
|
opt.search(objective_function, n_iter=n_iter) |
156
|
|
|
n_transitions_0 = opt.n_transitions |
157
|
|
|
|
158
|
|
|
opt = SimulatedAnnealingOptimizer( |
159
|
|
|
search_space, |
160
|
|
|
annealing_rate=annealing_rate_1, |
161
|
|
|
epsilon=epsilon, |
162
|
|
|
initialize={"random": n_initialize}, |
163
|
|
|
) |
164
|
|
|
opt.search(objective_function, n_iter=n_iter) |
165
|
|
|
n_transitions_1 = opt.n_transitions |
166
|
|
|
|
167
|
|
|
opt = SimulatedAnnealingOptimizer( |
168
|
|
|
search_space, |
169
|
|
|
annealing_rate=annealing_rate_100, |
170
|
|
|
epsilon=epsilon, |
171
|
|
|
initialize={"random": n_initialize}, |
172
|
|
|
) |
173
|
|
|
opt.search(objective_function, n_iter=n_iter) |
174
|
|
|
n_transitions_100 = opt.n_transitions |
175
|
|
|
|
176
|
|
|
print("\n n_transitions_0", n_transitions_0) |
177
|
|
|
print("\n n_transitions_1", n_transitions_1) |
178
|
|
|
print("\n n_transitions_100", n_transitions_100) |
179
|
|
|
|
180
|
|
|
assert n_transitions_0 in [0, 1] |
181
|
|
|
assert n_transitions_1 < n_transitions_100 |
182
|
|
|
|