test_results_0()   A
last analyzed

Complexity

Conditions 1

Size

Total Lines 22
Code Lines 16

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 16
nop 1
dl 0
loc 22
rs 9.6
c 0
b 0
f 0
1
import pytest
2
import numpy as np
3
4
from ._parametrize import optimizers
5
6
7
@pytest.mark.parametrize(*optimizers)
8
def test_results_0(Optimizer):
9
    search_space = {"x1": np.arange(-10, 1, 1)}
10
11
    def objective_function(para):
12
        score = -para["x1"] * para["x1"]
13
        return score
14
15
    initialize = {"random": 2}
16
17
    opt = Optimizer(search_space, initialize=initialize)
18
    opt.search(
19
        objective_function,
20
        n_iter=30,
21
        memory=False,
22
        verbosity={"print_results": False, "progress_bar": False},
23
    )
24
25
    results_set = set(opt.search_data["x1"])
26
    search_space_set = set(search_space["x1"])
27
28
    assert results_set.issubset(search_space_set)
29
30
31
@pytest.mark.parametrize(*optimizers)
32
def test_results_1(Optimizer):
33
    search_space = {"x1": np.arange(-10, 1, 1), "x2": np.arange(-10, 1, 1)}
34
35
    def objective_function(para):
36
        score = -(para["x1"] * para["x1"] + para["x2"] * para["x2"])
37
        return score
38
39
    initialize = {"random": 2}
40
41
    opt = Optimizer(search_space, initialize=initialize)
42
    opt.search(
43
        objective_function,
44
        n_iter=50,
45
        memory=False,
46
        verbosity={"print_results": False, "progress_bar": False},
47
    )
48
49
    results_set_x1 = set(opt.search_data["x1"])
50
    search_space_set_x1 = set(search_space["x1"])
51
52
    assert results_set_x1.issubset(search_space_set_x1)
53
54
    results_set_x2 = set(opt.search_data["x2"])
55
    search_space_set_x2 = set(search_space["x2"])
56
57
    assert results_set_x2.issubset(search_space_set_x2)
58