1
|
|
|
import pytest |
2
|
|
|
import numpy as np |
3
|
|
|
|
4
|
|
|
from ._parametrize import optimizers_singleOpt, optimizers_PopBased, optimizers_SBOM |
5
|
|
|
|
6
|
|
|
|
7
|
|
|
def objective_function(para): |
8
|
|
|
score = -para["x1"] * para["x1"] |
9
|
|
|
return score |
10
|
|
|
|
11
|
|
|
|
12
|
|
|
search_space = {"x1": np.arange(-100, 1, 1)} |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
@pytest.mark.parametrize(*optimizers_singleOpt) |
16
|
|
|
def test_searches_0(Optimizer): |
17
|
|
|
|
18
|
|
|
initialize = {"warm_start": [{"x1": -100}]} |
19
|
|
|
|
20
|
|
|
opt = Optimizer(search_space, initialize=initialize) |
21
|
|
|
opt.search(objective_function, n_iter=1) |
22
|
|
|
opt.search(objective_function, n_iter=1) |
23
|
|
|
|
24
|
|
|
assert -100 in opt.search_data["x1"].values |
25
|
|
|
assert len(opt.search_data["x1"]) == 2 |
26
|
|
|
|
27
|
|
|
assert opt.n_init_total == 1 |
28
|
|
|
assert opt.n_iter_total == 1 |
29
|
|
|
assert opt.n_init_search == 0 |
30
|
|
|
assert opt.n_iter_search == 1 |
31
|
|
|
|
32
|
|
|
|
33
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers_PopBased) |
|
|
|
|
34
|
|
|
def test_searches_pop_0(Optimizer): |
35
|
|
|
|
36
|
|
|
initialize = {"warm_start": [{"x1": -100}]} |
37
|
|
|
|
38
|
|
|
opt = Optimizer(search_space, initialize=initialize) |
39
|
|
|
opt.search(objective_function, n_iter=1) |
40
|
|
|
opt.search(objective_function, n_iter=1) |
41
|
|
|
|
42
|
|
|
print("\n opt.search_data \n", opt.search_data) |
43
|
|
|
|
44
|
|
|
assert -100 in opt.search_data["x1"].values |
45
|
|
|
assert len(opt.search_data["x1"]) == 2 |
46
|
|
|
|
47
|
|
|
assert opt.n_init_total == 2 |
48
|
|
|
assert opt.n_iter_total == 0 |
49
|
|
|
assert opt.n_init_search == 1 |
50
|
|
|
assert opt.n_iter_search == 0 |
51
|
|
|
|
52
|
|
|
|
53
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers_singleOpt) |
|
|
|
|
54
|
|
|
def test_searches_1(Optimizer): |
55
|
|
|
initialize = {"warm_start": [{"x1": -100}]} |
56
|
|
|
|
57
|
|
|
opt = Optimizer(search_space, initialize=initialize) |
58
|
|
|
opt.search(objective_function, n_iter=1) |
59
|
|
|
|
60
|
|
|
print("\n opt.search_data \n", opt.search_data) |
61
|
|
|
|
62
|
|
|
opt.search(objective_function, n_iter=10) |
63
|
|
|
|
64
|
|
|
print("\n opt.search_data \n", opt.search_data) |
65
|
|
|
|
66
|
|
|
assert -100 in opt.search_data["x1"].values |
67
|
|
|
assert len(opt.search_data["x1"]) == 11 |
68
|
|
|
|
69
|
|
|
assert opt.n_init_total == 1 |
70
|
|
|
assert opt.n_iter_total == 10 |
71
|
|
|
assert opt.n_init_search == 0 |
72
|
|
|
assert opt.n_iter_search == 10 |
73
|
|
|
|
74
|
|
|
|
75
|
|
|
@pytest.mark.parametrize(*optimizers_PopBased) |
76
|
|
|
def test_searches_pop_1(Optimizer): |
77
|
|
|
initialize = {"warm_start": [{"x1": -100}]} |
78
|
|
|
|
79
|
|
|
opt = Optimizer(search_space, initialize=initialize) |
80
|
|
|
opt.search(objective_function, n_iter=1) |
81
|
|
|
opt.search(objective_function, n_iter=10) |
82
|
|
|
|
83
|
|
|
assert -100 in opt.search_data["x1"].values |
84
|
|
|
assert len(opt.search_data["x1"]) == 11 |
85
|
|
|
|
86
|
|
|
assert opt.n_init_total != 1 |
87
|
|
|
assert opt.n_iter_total != 10 |
88
|
|
|
assert opt.n_init_search != 0 |
89
|
|
|
assert opt.n_iter_search != 10 |
90
|
|
|
|
91
|
|
|
|
92
|
|
|
@pytest.mark.parametrize(*optimizers_singleOpt) |
93
|
|
|
def test_searches_2(Optimizer): |
94
|
|
|
initialize = {"warm_start": [{"x1": -100}]} |
95
|
|
|
|
96
|
|
|
opt = Optimizer(search_space, initialize=initialize) |
97
|
|
|
opt.search(objective_function, n_iter=1) |
98
|
|
|
opt.search(objective_function, n_iter=20) |
99
|
|
|
|
100
|
|
|
assert -100 in opt.search_data["x1"].values |
101
|
|
|
assert len(opt.search_data["x1"]) == 21 |
102
|
|
|
|
103
|
|
|
assert opt.n_init_total == 1 |
104
|
|
|
assert opt.n_iter_total == 20 |
105
|
|
|
assert opt.n_init_search == 0 |
106
|
|
|
assert opt.n_iter_search == 20 |
107
|
|
|
|
108
|
|
|
|
109
|
|
|
@pytest.mark.parametrize(*optimizers_PopBased) |
110
|
|
|
def test_searches_pop_2(Optimizer): |
111
|
|
|
initialize = {"warm_start": [{"x1": -100}]} |
112
|
|
|
|
113
|
|
|
opt = Optimizer(search_space, initialize=initialize) |
114
|
|
|
opt.search(objective_function, n_iter=1) |
115
|
|
|
opt.search(objective_function, n_iter=20) |
116
|
|
|
|
117
|
|
|
assert -100 in opt.search_data["x1"].values |
118
|
|
|
assert len(opt.search_data["x1"]) == 21 |
119
|
|
|
|
120
|
|
|
assert opt.n_init_total != 1 |
121
|
|
|
assert opt.n_iter_total != 20 |
122
|
|
|
assert opt.n_init_search != 0 |
123
|
|
|
assert opt.n_iter_search != 20 |
124
|
|
|
|
125
|
|
|
|
126
|
|
|
@pytest.mark.parametrize(*optimizers_singleOpt) |
127
|
|
|
def test_searches_3(Optimizer): |
128
|
|
|
initialize = {"warm_start": [{"x1": -100}]} |
129
|
|
|
|
130
|
|
|
opt = Optimizer(search_space, initialize=initialize) |
131
|
|
|
opt.search(objective_function, n_iter=10) |
132
|
|
|
opt.search(objective_function, n_iter=20) |
133
|
|
|
|
134
|
|
|
assert -100 in opt.search_data["x1"].values |
135
|
|
|
assert len(opt.search_data["x1"]) == 30 |
136
|
|
|
|
137
|
|
|
assert opt.n_init_total == 1 |
138
|
|
|
assert opt.n_iter_total == 29 |
139
|
|
|
assert opt.n_init_search == 0 |
140
|
|
|
assert opt.n_iter_search == 20 |
141
|
|
|
|
142
|
|
|
|
143
|
|
|
@pytest.mark.parametrize(*optimizers_PopBased) |
144
|
|
|
def test_searches_pop_3(Optimizer): |
145
|
|
|
initialize = {"warm_start": [{"x1": -100}]} |
146
|
|
|
|
147
|
|
|
opt = Optimizer(search_space, initialize=initialize) |
148
|
|
|
opt.search(objective_function, n_iter=20) |
149
|
|
|
opt.search(objective_function, n_iter=20) |
150
|
|
|
|
151
|
|
|
assert -100 in opt.search_data["x1"].values |
152
|
|
|
assert len(opt.search_data["x1"]) == 40 |
153
|
|
|
|
154
|
|
|
assert 1 < opt.n_init_total < 20 |
155
|
|
|
assert opt.n_iter_total > 20 |
156
|
|
|
assert opt.n_init_search == 0 |
157
|
|
|
assert opt.n_iter_search == 20 |
158
|
|
|
|
159
|
|
|
|
160
|
|
|
@pytest.mark.parametrize(*optimizers_singleOpt) |
161
|
|
|
def test_searches_4(Optimizer): |
162
|
|
|
initialize = {"warm_start": [{"x1": -100}]} |
163
|
|
|
|
164
|
|
|
opt = Optimizer(search_space, initialize=initialize) |
165
|
|
|
opt.search(objective_function, n_iter=10) |
166
|
|
|
opt.search(objective_function, n_iter=10) |
167
|
|
|
opt.search(objective_function, n_iter=10) |
168
|
|
|
|
169
|
|
|
assert -100 in opt.search_data["x1"].values |
170
|
|
|
assert len(opt.search_data["x1"]) == 30 |
171
|
|
|
|
172
|
|
|
assert opt.n_init_total == 1 |
173
|
|
|
assert opt.n_iter_total == 29 |
174
|
|
|
assert opt.n_init_search == 0 |
175
|
|
|
assert opt.n_iter_search == 10 |
176
|
|
|
|
177
|
|
|
|
178
|
|
|
@pytest.mark.parametrize(*optimizers_PopBased) |
179
|
|
|
def test_searches_pop_4(Optimizer): |
180
|
|
|
initialize = {"warm_start": [{"x1": -100}]} |
181
|
|
|
|
182
|
|
|
opt = Optimizer(search_space, initialize=initialize) |
183
|
|
|
opt.search(objective_function, n_iter=10) |
184
|
|
|
opt.search(objective_function, n_iter=10) |
185
|
|
|
opt.search(objective_function, n_iter=10) |
186
|
|
|
|
187
|
|
|
assert -100 in opt.search_data["x1"].values |
188
|
|
|
assert len(opt.search_data["x1"]) == 30 |
189
|
|
|
|
190
|
|
|
assert opt.n_init_total != 1 |
191
|
|
|
assert opt.n_iter_total != 29 |
192
|
|
|
assert opt.n_init_search == 0 |
193
|
|
|
assert opt.n_iter_search == 10 |
194
|
|
|
|