objective_function()   A
last analyzed

Complexity

Conditions 1

Size

Total Lines 3
Code Lines 3

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 3
nop 1
dl 0
loc 3
rs 10
c 0
b 0
f 0
1
import pytest
2
import time
3
import numpy as np
4
from sklearn.datasets import load_breast_cancer
5
from sklearn.model_selection import cross_val_score
6
from sklearn.tree import DecisionTreeClassifier
7
8
from ._parametrize import optimizers
9
10
11
def objective_function(para):
12
    score = -para["x1"] * para["x1"]
13
    return score
14
15
16
search_space = {
17
    "x1": np.arange(0, 100000, 0.1),
18
}
19
20
21 View Code Duplication
@pytest.mark.parametrize(*optimizers)
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
22
def test_max_score_0(Optimizer):
23
    def objective_function(para):
24
        score = -para["x1"] * para["x1"]
25
        return score
26
27
    search_space = {
28
        "x1": np.arange(0, 100, 0.1),
29
    }
30
31
    max_score = -9999
32
33
    opt = Optimizer(
34
        search_space,
35
        initialize={"warm_start": [{"x1": 99}]},
36
    )
37
    opt.search(
38
        objective_function,
39
        n_iter=100,
40
        max_score=max_score,
41
    )
42
43
    print("\n Results head \n", opt.search_data.head())
44
    print("\n Results tail \n", opt.search_data.tail())
45
46
    print("\nN iter:", len(opt.search_data))
47
48
    assert -100 > opt.best_score > max_score
49
50
51 View Code Duplication
@pytest.mark.parametrize(*optimizers)
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
52
def test_max_score_1(Optimizer):
53
    def objective_function(para):
54
        score = -para["x1"] * para["x1"]
55
        time.sleep(0.01)
56
        return score
57
58
    search_space = {
59
        "x1": np.arange(0, 100, 0.1),
60
    }
61
62
    max_score = -9999
63
64
    c_time = time.time()
65
    opt = Optimizer(search_space, initialize={"warm_start": [{"x1": 99}]})
66
    opt.search(
67
        objective_function,
68
        n_iter=100000,
69
        max_score=max_score,
70
    )
71
    diff_time = time.time() - c_time
72
73
    print("\n Results head \n", opt.search_data.head())
74
    print("\n Results tail \n", opt.search_data.tail())
75
76
    print("\nN iter:", len(opt.search_data))
77
78
    assert diff_time < 1
79