1
|
|
|
import time |
2
|
|
|
import pytest |
3
|
|
|
import numpy as np |
4
|
|
|
from sklearn.datasets import load_breast_cancer |
5
|
|
|
from sklearn.model_selection import cross_val_score |
6
|
|
|
from sklearn.tree import DecisionTreeClassifier |
7
|
|
|
from gradient_free_optimizers import ( |
8
|
|
|
RandomSearchOptimizer, |
9
|
|
|
HillClimbingOptimizer, |
10
|
|
|
) |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
def objective_function(para): |
14
|
|
|
score = -para["x1"] * para["x1"] |
15
|
|
|
return score |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
search_space = { |
19
|
|
|
"x1": np.arange(0, 100000, 0.1), |
20
|
|
|
} |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
def test_early_stop_0(): |
24
|
|
|
early_stopping = { |
25
|
|
|
"n_iter_no_change": 5, |
26
|
|
|
"tol_abs": 0.1, |
27
|
|
|
"tol_rel": 0.1, |
28
|
|
|
} |
29
|
|
|
|
30
|
|
|
opt = HillClimbingOptimizer(search_space, initialize={"warm_start": [{"x1": 0}]}) |
31
|
|
|
opt.search( |
32
|
|
|
objective_function, |
33
|
|
|
n_iter=1000, |
34
|
|
|
early_stopping=early_stopping, |
35
|
|
|
) |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
def test_early_stop_1(): |
39
|
|
|
early_stopping = { |
40
|
|
|
"n_iter_no_change": 5, |
41
|
|
|
"tol_abs": None, |
42
|
|
|
"tol_rel": 5, |
43
|
|
|
} |
44
|
|
|
|
45
|
|
|
opt = HillClimbingOptimizer(search_space, initialize={"warm_start": [{"x1": 0}]}) |
46
|
|
|
opt.search( |
47
|
|
|
objective_function, |
48
|
|
|
n_iter=1000, |
49
|
|
|
early_stopping=early_stopping, |
50
|
|
|
) |
51
|
|
|
|
52
|
|
|
|
53
|
|
|
def test_early_stop_2(): |
54
|
|
|
early_stopping = { |
55
|
|
|
"n_iter_no_change": 5, |
56
|
|
|
"tol_abs": 0.1, |
57
|
|
|
"tol_rel": None, |
58
|
|
|
} |
59
|
|
|
|
60
|
|
|
opt = HillClimbingOptimizer(search_space, initialize={"warm_start": [{"x1": 0}]}) |
61
|
|
|
opt.search( |
62
|
|
|
objective_function, |
63
|
|
|
n_iter=1000, |
64
|
|
|
early_stopping=early_stopping, |
65
|
|
|
) |
66
|
|
|
|
67
|
|
|
|
68
|
|
View Code Duplication |
def test_early_stop_3(): |
|
|
|
|
69
|
|
|
def objective_function(para): |
70
|
|
|
score = -para["x1"] * para["x1"] |
71
|
|
|
return score |
72
|
|
|
|
73
|
|
|
search_space = { |
74
|
|
|
"x1": np.arange(0, 100, 0.1), |
75
|
|
|
} |
76
|
|
|
|
77
|
|
|
n_iter_no_change = 5 |
78
|
|
|
early_stopping = { |
79
|
|
|
"n_iter_no_change": n_iter_no_change, |
80
|
|
|
} |
81
|
|
|
|
82
|
|
|
opt = HillClimbingOptimizer(search_space, initialize={"warm_start": [{"x1": 0}]}) |
83
|
|
|
opt.search( |
84
|
|
|
objective_function, |
85
|
|
|
n_iter=100000, |
86
|
|
|
early_stopping=early_stopping, |
87
|
|
|
) |
88
|
|
|
search_data = opt.search_data |
89
|
|
|
n_performed_iter = len(search_data) |
90
|
|
|
|
91
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
92
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
93
|
|
|
|
94
|
|
|
assert n_performed_iter == (n_iter_no_change + 1) |
95
|
|
|
|
96
|
|
|
|
97
|
|
View Code Duplication |
def test_early_stop_4(): |
|
|
|
|
98
|
|
|
def objective_function(para): |
99
|
|
|
return para["x1"] |
100
|
|
|
|
101
|
|
|
search_space = { |
102
|
|
|
"x1": np.arange(0, 100, 0.1), |
103
|
|
|
} |
104
|
|
|
|
105
|
|
|
n_iter_no_change = 5 |
106
|
|
|
early_stopping = { |
107
|
|
|
"n_iter_no_change": 5, |
108
|
|
|
"tol_abs": 1, |
109
|
|
|
"tol_rel": None, |
110
|
|
|
} |
111
|
|
|
|
112
|
|
|
start1 = {"x1": 0} |
113
|
|
|
start2 = {"x1": 1} |
114
|
|
|
start3 = {"x1": 2} |
115
|
|
|
start4 = {"x1": 3} |
116
|
|
|
start5 = {"x1": 4} |
117
|
|
|
|
118
|
|
|
warm_start_l = [ |
119
|
|
|
start1, |
120
|
|
|
start1, |
121
|
|
|
start1, |
122
|
|
|
start1, |
123
|
|
|
start1, |
124
|
|
|
start2, |
125
|
|
|
start2, |
126
|
|
|
start2, |
127
|
|
|
start3, |
128
|
|
|
start3, |
129
|
|
|
start3, |
130
|
|
|
start4, |
131
|
|
|
start4, |
132
|
|
|
start4, |
133
|
|
|
start5, |
134
|
|
|
start5, |
135
|
|
|
start5, |
136
|
|
|
] |
137
|
|
|
n_iter = len(warm_start_l) |
138
|
|
|
|
139
|
|
|
opt = HillClimbingOptimizer(search_space, initialize={"warm_start": warm_start_l}) |
140
|
|
|
opt.search( |
141
|
|
|
objective_function, |
142
|
|
|
n_iter=n_iter, |
143
|
|
|
early_stopping=early_stopping, |
144
|
|
|
) |
145
|
|
|
search_data = opt.search_data |
146
|
|
|
n_performed_iter = len(search_data) |
147
|
|
|
|
148
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
149
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
150
|
|
|
|
151
|
|
|
assert n_performed_iter == n_iter |
152
|
|
|
|
153
|
|
|
|
154
|
|
View Code Duplication |
def test_early_stop_5(): |
|
|
|
|
155
|
|
|
def objective_function(para): |
156
|
|
|
return para["x1"] |
157
|
|
|
|
158
|
|
|
search_space = { |
159
|
|
|
"x1": np.arange(0, 100, 0.01), |
160
|
|
|
} |
161
|
|
|
|
162
|
|
|
n_iter_no_change = 5 |
163
|
|
|
early_stopping = { |
164
|
|
|
"n_iter_no_change": n_iter_no_change, |
165
|
|
|
"tol_abs": 10, |
166
|
|
|
"tol_rel": None, |
167
|
|
|
} |
168
|
|
|
|
169
|
|
|
start1 = {"x1": 0} |
170
|
|
|
start2 = {"x1": 9} |
171
|
|
|
start3 = {"x1": 20} |
172
|
|
|
|
173
|
|
|
warm_start_l = [ |
174
|
|
|
start1, |
175
|
|
|
start1, |
176
|
|
|
start1, |
177
|
|
|
start1, |
178
|
|
|
start1, |
179
|
|
|
start2, |
180
|
|
|
start2, |
181
|
|
|
start2, |
182
|
|
|
start3, |
183
|
|
|
start3, |
184
|
|
|
start3, |
185
|
|
|
] |
186
|
|
|
n_iter = len(warm_start_l) |
187
|
|
|
|
188
|
|
|
opt = HillClimbingOptimizer(search_space, initialize={"warm_start": warm_start_l}) |
189
|
|
|
opt.search( |
190
|
|
|
objective_function, |
191
|
|
|
n_iter=n_iter, |
192
|
|
|
early_stopping=early_stopping, |
193
|
|
|
) |
194
|
|
|
search_data = opt.search_data |
195
|
|
|
n_performed_iter = len(search_data) |
196
|
|
|
|
197
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
198
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
199
|
|
|
|
200
|
|
|
assert n_performed_iter == (n_iter_no_change + 1) |
201
|
|
|
|
202
|
|
|
|
203
|
|
View Code Duplication |
def test_early_stop_6(): |
|
|
|
|
204
|
|
|
def objective_function(para): |
205
|
|
|
return para["x1"] |
206
|
|
|
|
207
|
|
|
search_space = { |
208
|
|
|
"x1": np.arange(0, 100, 0.01), |
209
|
|
|
} |
210
|
|
|
|
211
|
|
|
n_iter_no_change = 5 |
212
|
|
|
early_stopping = { |
213
|
|
|
"n_iter_no_change": 5, |
214
|
|
|
"tol_abs": None, |
215
|
|
|
"tol_rel": 10, |
216
|
|
|
} |
217
|
|
|
|
218
|
|
|
start1 = {"x1": 1} |
219
|
|
|
start2 = {"x1": 1.1} |
220
|
|
|
start3 = {"x1": 1.22} |
221
|
|
|
start4 = {"x1": 1.35} |
222
|
|
|
start5 = {"x1": 1.48} |
223
|
|
|
|
224
|
|
|
warm_start_l = [ |
225
|
|
|
start1, |
226
|
|
|
start1, |
227
|
|
|
start1, |
228
|
|
|
start1, |
229
|
|
|
start1, |
230
|
|
|
start2, |
231
|
|
|
start2, |
232
|
|
|
start2, |
233
|
|
|
start3, |
234
|
|
|
start3, |
235
|
|
|
start3, |
236
|
|
|
start4, |
237
|
|
|
start4, |
238
|
|
|
start4, |
239
|
|
|
start5, |
240
|
|
|
start5, |
241
|
|
|
start5, |
242
|
|
|
] |
243
|
|
|
n_iter = len(warm_start_l) |
244
|
|
|
|
245
|
|
|
opt = HillClimbingOptimizer(search_space, initialize={"warm_start": warm_start_l}) |
246
|
|
|
opt.search( |
247
|
|
|
objective_function, |
248
|
|
|
n_iter=n_iter, |
249
|
|
|
early_stopping=early_stopping, |
250
|
|
|
) |
251
|
|
|
search_data = opt.search_data |
252
|
|
|
n_performed_iter = len(search_data) |
253
|
|
|
|
254
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
255
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
256
|
|
|
|
257
|
|
|
assert n_performed_iter == n_iter |
258
|
|
|
|
259
|
|
|
|
260
|
|
View Code Duplication |
def test_early_stop_7(): |
|
|
|
|
261
|
|
|
def objective_function(para): |
262
|
|
|
return para["x1"] |
263
|
|
|
|
264
|
|
|
search_space = { |
265
|
|
|
"x1": np.arange(0, 100, 0.01), |
266
|
|
|
} |
267
|
|
|
|
268
|
|
|
n_iter_no_change = 5 |
269
|
|
|
early_stopping = { |
270
|
|
|
"n_iter_no_change": n_iter_no_change, |
271
|
|
|
"tol_abs": None, |
272
|
|
|
"tol_rel": 10, |
273
|
|
|
} |
274
|
|
|
|
275
|
|
|
start1 = {"x1": 1} |
276
|
|
|
start2 = {"x1": 1.09} |
277
|
|
|
start3 = {"x1": 1.20} |
278
|
|
|
|
279
|
|
|
warm_start_l = [ |
280
|
|
|
start1, |
281
|
|
|
start1, |
282
|
|
|
start1, |
283
|
|
|
start1, |
284
|
|
|
start1, |
285
|
|
|
start2, |
286
|
|
|
start2, |
287
|
|
|
start2, |
288
|
|
|
start3, |
289
|
|
|
start3, |
290
|
|
|
start3, |
291
|
|
|
] |
292
|
|
|
n_iter = len(warm_start_l) |
293
|
|
|
|
294
|
|
|
opt = HillClimbingOptimizer(search_space, initialize={"warm_start": warm_start_l}) |
295
|
|
|
opt.search( |
296
|
|
|
objective_function, |
297
|
|
|
n_iter=n_iter, |
298
|
|
|
early_stopping=early_stopping, |
299
|
|
|
) |
300
|
|
|
search_data = opt.search_data |
301
|
|
|
n_performed_iter = len(search_data) |
302
|
|
|
|
303
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
304
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
305
|
|
|
|
306
|
|
|
assert n_performed_iter == (n_iter_no_change + 1) |
307
|
|
|
|