|
1
|
|
|
import pytest |
|
2
|
|
|
import numpy as np |
|
3
|
|
|
import pandas as pd |
|
4
|
|
|
|
|
5
|
|
|
from gradient_free_optimizers.optimizers.core_optimizer import Converter |
|
6
|
|
|
from gradient_free_optimizers._result import Result |
|
7
|
|
|
|
|
8
|
|
|
|
|
9
|
|
|
def equal_arraysInList(list1, list2): |
|
10
|
|
|
return all((e1 == e2).all() for e1, e2 in zip(list1, list2)) |
|
11
|
|
|
|
|
12
|
|
|
|
|
13
|
|
|
def equal_dictKeysValues(dict1, dict2): |
|
14
|
|
|
if len(dict1.keys()) != len(dict2.keys()): |
|
15
|
|
|
return False |
|
16
|
|
|
for key1 in dict1.keys: |
|
17
|
|
|
if dict1[key1] != dict2[key1]: |
|
18
|
|
|
return False |
|
19
|
|
|
|
|
20
|
|
|
return True |
|
21
|
|
|
|
|
22
|
|
|
|
|
23
|
|
|
def get_idx_order(list1, list2): |
|
24
|
|
|
return [idx for o in list1 for idx, name in enumerate(list2) if o == name] |
|
25
|
|
|
|
|
26
|
|
|
|
|
27
|
|
|
def reorder(list1, idx_list): |
|
28
|
|
|
return [list1[i] for i in idx_list] |
|
29
|
|
|
|
|
30
|
|
|
|
|
31
|
|
|
def unordered_dict_workaround(conv, order): |
|
32
|
|
|
# workaround for doing this test with unordered dicts |
|
33
|
|
|
|
|
34
|
|
|
idx_order = get_idx_order(order, conv.para_names) |
|
35
|
|
|
search_space_values_reordered = reorder(conv.search_space_values, idx_order) |
|
36
|
|
|
para_names_reordered = reorder(conv.para_names, idx_order) |
|
37
|
|
|
|
|
38
|
|
|
conv.search_space_values = search_space_values_reordered |
|
39
|
|
|
conv.para_names = para_names_reordered |
|
40
|
|
|
|
|
41
|
|
|
return conv |
|
42
|
|
|
|
|
43
|
|
|
|
|
44
|
|
|
######### test position2value ######### |
|
45
|
|
|
|
|
46
|
|
|
|
|
47
|
|
|
position2value_test_para_0 = [ |
|
48
|
|
|
(np.array([0]), np.array([-10])), |
|
49
|
|
|
(np.array([20]), np.array([10])), |
|
50
|
|
|
(np.array([10]), np.array([0])), |
|
51
|
|
|
(None, None), |
|
52
|
|
|
] |
|
53
|
|
|
|
|
54
|
|
|
|
|
55
|
|
|
@pytest.mark.parametrize("test_input,expected", position2value_test_para_0) |
|
56
|
|
|
def test_position2value_0(test_input, expected): |
|
57
|
|
|
search_space = { |
|
58
|
|
|
"x1": np.arange(-10, 11, 1), |
|
59
|
|
|
} |
|
60
|
|
|
|
|
61
|
|
|
conv = Converter(search_space) |
|
62
|
|
|
value = conv.position2value(test_input) |
|
63
|
|
|
|
|
64
|
|
|
assert value == expected |
|
65
|
|
|
|
|
66
|
|
|
|
|
67
|
|
|
position2value_test_para_1 = [ |
|
68
|
|
|
(np.array([0, 0]), np.array([-10, 0])), |
|
69
|
|
|
(np.array([20, 0]), np.array([10, 0])), |
|
70
|
|
|
(np.array([10, 10]), np.array([0, 10])), |
|
71
|
|
|
] |
|
72
|
|
|
|
|
73
|
|
|
|
|
74
|
|
|
@pytest.mark.parametrize("test_input,expected", position2value_test_para_1) |
|
75
|
|
|
def test_position2value_1(test_input, expected): |
|
76
|
|
|
search_space = { |
|
77
|
|
|
"x1": np.arange(-10, 11, 1), |
|
78
|
|
|
"x2": np.arange(0, 11, 1), |
|
79
|
|
|
} |
|
80
|
|
|
|
|
81
|
|
|
conv = Converter(search_space) |
|
82
|
|
|
|
|
83
|
|
|
order = ["x1", "x2"] |
|
84
|
|
|
conv = unordered_dict_workaround(conv, order) |
|
85
|
|
|
|
|
86
|
|
|
value = conv.position2value(test_input) |
|
87
|
|
|
|
|
88
|
|
|
assert (value == expected).all() |
|
89
|
|
|
|
|
90
|
|
|
|
|
91
|
|
|
######### test value2position ######### |
|
92
|
|
|
|
|
93
|
|
|
|
|
94
|
|
|
value2position_test_para_0 = [ |
|
95
|
|
|
(np.array([-10]), np.array([0])), |
|
96
|
|
|
(np.array([10]), np.array([20])), |
|
97
|
|
|
(np.array([0]), np.array([10])), |
|
98
|
|
|
] |
|
99
|
|
|
|
|
100
|
|
|
|
|
101
|
|
|
@pytest.mark.parametrize("test_input,expected", value2position_test_para_0) |
|
102
|
|
|
def test_value2position_0(test_input, expected): |
|
103
|
|
|
search_space = { |
|
104
|
|
|
"x1": np.arange(-10, 11, 1), |
|
105
|
|
|
} |
|
106
|
|
|
|
|
107
|
|
|
conv = Converter(search_space) |
|
108
|
|
|
position = conv.value2position(test_input) |
|
109
|
|
|
|
|
110
|
|
|
assert position == expected |
|
111
|
|
|
|
|
112
|
|
|
|
|
113
|
|
|
value2position_test_para_1 = [ |
|
114
|
|
|
([-10, 11], np.array([0, 10])), |
|
115
|
|
|
([10, 11], np.array([20, 10])), |
|
116
|
|
|
([0, 0], np.array([10, 0])), |
|
117
|
|
|
] |
|
118
|
|
|
|
|
119
|
|
|
|
|
120
|
|
|
@pytest.mark.parametrize("test_input,expected", value2position_test_para_1) |
|
121
|
|
|
def test_value2position_1(test_input, expected): |
|
122
|
|
|
search_space = { |
|
123
|
|
|
"x1": np.arange(-10, 11, 1), |
|
124
|
|
|
"x2": np.arange(0, 11, 1), |
|
125
|
|
|
} |
|
126
|
|
|
|
|
127
|
|
|
conv = Converter(search_space) |
|
128
|
|
|
order = ["x1", "x2"] |
|
129
|
|
|
conv = unordered_dict_workaround(conv, order) |
|
130
|
|
|
position = conv.value2position(test_input) |
|
131
|
|
|
|
|
132
|
|
|
assert (position == expected).all() |
|
133
|
|
|
|
|
134
|
|
|
|
|
135
|
|
|
######### test value2para ######### |
|
136
|
|
|
|
|
137
|
|
|
|
|
138
|
|
|
value2para_test_para_0 = [ |
|
139
|
|
|
(np.array([-10]), {"x1": np.array([-10])}), |
|
140
|
|
|
(np.array([10]), {"x1": np.array([10])}), |
|
141
|
|
|
(np.array([0]), {"x1": np.array([0])}), |
|
142
|
|
|
] |
|
143
|
|
|
|
|
144
|
|
|
|
|
145
|
|
|
@pytest.mark.parametrize("test_input,expected", value2para_test_para_0) |
|
146
|
|
|
def test_value2para_0(test_input, expected): |
|
147
|
|
|
search_space = { |
|
148
|
|
|
"x1": np.arange(-10, 11, 1), |
|
149
|
|
|
} |
|
150
|
|
|
|
|
151
|
|
|
conv = Converter(search_space) |
|
152
|
|
|
para = conv.value2para(test_input) |
|
153
|
|
|
|
|
154
|
|
|
assert para == expected |
|
155
|
|
|
|
|
156
|
|
|
|
|
157
|
|
|
value2para_test_para_1 = [ |
|
158
|
|
|
(np.array([-10, 11]), {"x1": np.array([-10]), "x2": np.array([11])}), |
|
159
|
|
|
(np.array([10, 11]), {"x1": np.array([10]), "x2": np.array([11])}), |
|
160
|
|
|
(np.array([0, 0]), {"x1": np.array([0]), "x2": np.array([0])}), |
|
161
|
|
|
] |
|
162
|
|
|
|
|
163
|
|
|
|
|
164
|
|
|
@pytest.mark.parametrize("test_input,expected", value2para_test_para_1) |
|
165
|
|
|
def test_value2para_1(test_input, expected): |
|
166
|
|
|
search_space = { |
|
167
|
|
|
"x1": np.arange(-10, 11, 1), |
|
168
|
|
|
"x2": np.arange(0, 11, 1), |
|
169
|
|
|
} |
|
170
|
|
|
|
|
171
|
|
|
conv = Converter(search_space) |
|
172
|
|
|
order = ["x1", "x2"] |
|
173
|
|
|
conv = unordered_dict_workaround(conv, order) |
|
174
|
|
|
para = conv.value2para(test_input) |
|
175
|
|
|
|
|
176
|
|
|
assert para == expected |
|
177
|
|
|
|
|
178
|
|
|
|
|
179
|
|
|
######### test para2value ######### |
|
180
|
|
|
|
|
181
|
|
|
|
|
182
|
|
|
para2value_test_para_0 = [ |
|
183
|
|
|
({"x1": -10}, [-10]), |
|
184
|
|
|
({"x1": 10}, [10]), |
|
185
|
|
|
({"x1": 0}, [0]), |
|
186
|
|
|
] |
|
187
|
|
|
|
|
188
|
|
|
|
|
189
|
|
|
@pytest.mark.parametrize("test_input,expected", para2value_test_para_0) |
|
190
|
|
|
def test_para2value_0(test_input, expected): |
|
191
|
|
|
search_space = { |
|
192
|
|
|
"x1": np.arange(-10, 11, 1), |
|
193
|
|
|
} |
|
194
|
|
|
|
|
195
|
|
|
conv = Converter(search_space) |
|
196
|
|
|
value = conv.para2value(test_input) |
|
197
|
|
|
|
|
198
|
|
|
assert value == expected |
|
199
|
|
|
|
|
200
|
|
|
|
|
201
|
|
|
para2value_test_para_1 = [ |
|
202
|
|
|
({"x1": -10, "x2": 11}, [-10, 11]), |
|
203
|
|
|
({"x1": 10, "x2": 11}, [10, 11]), |
|
204
|
|
|
({"x1": 0, "x2": 0}, [0, 0]), |
|
205
|
|
|
] |
|
206
|
|
|
|
|
207
|
|
|
|
|
208
|
|
|
@pytest.mark.parametrize("test_input,expected", para2value_test_para_1) |
|
209
|
|
|
def test_para2value_1(test_input, expected): |
|
210
|
|
|
search_space = { |
|
211
|
|
|
"x1": np.arange(-10, 11, 1), |
|
212
|
|
|
"x2": np.arange(0, 11, 1), |
|
213
|
|
|
} |
|
214
|
|
|
|
|
215
|
|
|
conv = Converter(search_space) |
|
216
|
|
|
order = ["x1", "x2"] |
|
217
|
|
|
conv = unordered_dict_workaround(conv, order) |
|
218
|
|
|
value = conv.para2value(test_input) |
|
219
|
|
|
|
|
220
|
|
|
print("value", type(value)) |
|
221
|
|
|
print("expected", type(expected)) |
|
222
|
|
|
|
|
223
|
|
|
assert (np.array(value) == np.array(expected)).all() |
|
224
|
|
|
|
|
225
|
|
|
|
|
226
|
|
|
######### test values2positions ######### |
|
227
|
|
|
|
|
228
|
|
|
|
|
229
|
|
|
values_0 = [ |
|
230
|
|
|
np.array([-10]), |
|
231
|
|
|
np.array([10]), |
|
232
|
|
|
np.array([0]), |
|
233
|
|
|
] |
|
234
|
|
|
|
|
235
|
|
|
positions_0 = [ |
|
236
|
|
|
np.array([0]), |
|
237
|
|
|
np.array([20]), |
|
238
|
|
|
np.array([10]), |
|
239
|
|
|
] |
|
240
|
|
|
|
|
241
|
|
|
|
|
242
|
|
|
values_1 = [ |
|
243
|
|
|
np.array([-10]), |
|
244
|
|
|
np.array([10]), |
|
245
|
|
|
np.array([0]), |
|
246
|
|
|
np.array([-10]), |
|
247
|
|
|
np.array([10]), |
|
248
|
|
|
np.array([0]), |
|
249
|
|
|
np.array([-10]), |
|
250
|
|
|
np.array([10]), |
|
251
|
|
|
np.array([0]), |
|
252
|
|
|
] |
|
253
|
|
|
|
|
254
|
|
|
positions_1 = [ |
|
255
|
|
|
np.array([0]), |
|
256
|
|
|
np.array([20]), |
|
257
|
|
|
np.array([10]), |
|
258
|
|
|
np.array([0]), |
|
259
|
|
|
np.array([20]), |
|
260
|
|
|
np.array([10]), |
|
261
|
|
|
np.array([0]), |
|
262
|
|
|
np.array([20]), |
|
263
|
|
|
np.array([10]), |
|
264
|
|
|
] |
|
265
|
|
|
|
|
266
|
|
|
|
|
267
|
|
|
values2positions_test_para_0 = [ |
|
268
|
|
|
(values_0, positions_0), |
|
269
|
|
|
(values_1, positions_1), |
|
270
|
|
|
] |
|
271
|
|
|
|
|
272
|
|
|
|
|
273
|
|
|
@pytest.mark.parametrize("test_input,expected", values2positions_test_para_0) |
|
274
|
|
|
def test_values2positions_0(test_input, expected): |
|
275
|
|
|
search_space = { |
|
276
|
|
|
"x1": np.arange(-10, 11, 1), |
|
277
|
|
|
} |
|
278
|
|
|
|
|
279
|
|
|
conv = Converter(search_space) |
|
280
|
|
|
positions = conv.values2positions(test_input) |
|
281
|
|
|
|
|
282
|
|
|
assert positions == expected |
|
283
|
|
|
|
|
284
|
|
|
|
|
285
|
|
|
values_0 = [ |
|
286
|
|
|
np.array([-10, 10]), |
|
287
|
|
|
np.array([10, 10]), |
|
288
|
|
|
np.array([0, 0]), |
|
289
|
|
|
] |
|
290
|
|
|
|
|
291
|
|
|
positions_0 = [ |
|
292
|
|
|
np.array([0, 10]), |
|
293
|
|
|
np.array([20, 10]), |
|
294
|
|
|
np.array([10, 0]), |
|
295
|
|
|
] |
|
296
|
|
|
|
|
297
|
|
|
|
|
298
|
|
|
values_1 = [ |
|
299
|
|
|
np.array([-10, 10]), |
|
300
|
|
|
np.array([10, 10]), |
|
301
|
|
|
np.array([0, 0]), |
|
302
|
|
|
np.array([-10, 10]), |
|
303
|
|
|
np.array([10, 10]), |
|
304
|
|
|
np.array([0, 0]), |
|
305
|
|
|
np.array([-10, 10]), |
|
306
|
|
|
np.array([10, 10]), |
|
307
|
|
|
np.array([0, 0]), |
|
308
|
|
|
] |
|
309
|
|
|
|
|
310
|
|
|
positions_1 = [ |
|
311
|
|
|
np.array([0, 10]), |
|
312
|
|
|
np.array([20, 10]), |
|
313
|
|
|
np.array([10, 0]), |
|
314
|
|
|
np.array([0, 10]), |
|
315
|
|
|
np.array([20, 10]), |
|
316
|
|
|
np.array([10, 0]), |
|
317
|
|
|
np.array([0, 10]), |
|
318
|
|
|
np.array([20, 10]), |
|
319
|
|
|
np.array([10, 0]), |
|
320
|
|
|
] |
|
321
|
|
|
|
|
322
|
|
|
|
|
323
|
|
|
values2positions_test_para_1 = [ |
|
324
|
|
|
(values_0, positions_0), |
|
325
|
|
|
(values_1, positions_1), |
|
326
|
|
|
] |
|
327
|
|
|
|
|
328
|
|
|
|
|
329
|
|
|
@pytest.mark.parametrize("test_input,expected", values2positions_test_para_1) |
|
330
|
|
|
def test_values2positions_1(test_input, expected): |
|
331
|
|
|
search_space = { |
|
332
|
|
|
"x1": np.arange(-10, 11, 1), |
|
333
|
|
|
"x2": np.arange(0, 11, 1), |
|
334
|
|
|
} |
|
335
|
|
|
|
|
336
|
|
|
conv = Converter(search_space) |
|
337
|
|
|
order = ["x1", "x2"] |
|
338
|
|
|
conv = unordered_dict_workaround(conv, order) |
|
339
|
|
|
positions = conv.values2positions(test_input) |
|
340
|
|
|
|
|
341
|
|
|
assert equal_arraysInList(positions, expected) |
|
342
|
|
|
|
|
343
|
|
|
|
|
344
|
|
|
""" --- test positions2values --- """ |
|
345
|
|
|
|
|
346
|
|
|
values_0 = [ |
|
347
|
|
|
np.array([-10]), |
|
348
|
|
|
np.array([10]), |
|
349
|
|
|
np.array([0]), |
|
350
|
|
|
] |
|
351
|
|
|
|
|
352
|
|
|
positions_0 = [ |
|
353
|
|
|
np.array([0]), |
|
354
|
|
|
np.array([20]), |
|
355
|
|
|
np.array([10]), |
|
356
|
|
|
] |
|
357
|
|
|
|
|
358
|
|
|
|
|
359
|
|
|
values_1 = [ |
|
360
|
|
|
np.array([-10]), |
|
361
|
|
|
np.array([10]), |
|
362
|
|
|
np.array([0]), |
|
363
|
|
|
np.array([-10]), |
|
364
|
|
|
np.array([10]), |
|
365
|
|
|
np.array([0]), |
|
366
|
|
|
np.array([-10]), |
|
367
|
|
|
np.array([10]), |
|
368
|
|
|
np.array([0]), |
|
369
|
|
|
] |
|
370
|
|
|
|
|
371
|
|
|
|
|
372
|
|
|
positions_1 = [ |
|
373
|
|
|
np.array([0]), |
|
374
|
|
|
np.array([20]), |
|
375
|
|
|
np.array([10]), |
|
376
|
|
|
np.array([0]), |
|
377
|
|
|
np.array([20]), |
|
378
|
|
|
np.array([10]), |
|
379
|
|
|
np.array([0]), |
|
380
|
|
|
np.array([20]), |
|
381
|
|
|
np.array([10]), |
|
382
|
|
|
] |
|
383
|
|
|
|
|
384
|
|
|
|
|
385
|
|
|
positions2values_test_para_0 = [ |
|
386
|
|
|
(positions_0, values_0), |
|
387
|
|
|
(positions_1, values_1), |
|
388
|
|
|
] |
|
389
|
|
|
|
|
390
|
|
|
|
|
391
|
|
|
@pytest.mark.parametrize("test_input,expected", positions2values_test_para_0) |
|
392
|
|
|
def test_positions2values_0(test_input, expected): |
|
393
|
|
|
search_space = { |
|
394
|
|
|
"x1": np.arange(-10, 11, 1), |
|
395
|
|
|
} |
|
396
|
|
|
|
|
397
|
|
|
conv = Converter(search_space) |
|
398
|
|
|
values = conv.positions2values(test_input) |
|
399
|
|
|
|
|
400
|
|
|
assert values == expected |
|
401
|
|
|
|
|
402
|
|
|
|
|
403
|
|
|
values_0 = [ |
|
404
|
|
|
np.array([-10, 10]), |
|
405
|
|
|
np.array([10, 10]), |
|
406
|
|
|
np.array([0, 0]), |
|
407
|
|
|
] |
|
408
|
|
|
|
|
409
|
|
|
positions_0 = [ |
|
410
|
|
|
np.array([0, 10]), |
|
411
|
|
|
np.array([20, 10]), |
|
412
|
|
|
np.array([10, 0]), |
|
413
|
|
|
] |
|
414
|
|
|
|
|
415
|
|
|
|
|
416
|
|
|
values_1 = [ |
|
417
|
|
|
np.array([-10, 10]), |
|
418
|
|
|
np.array([10, 10]), |
|
419
|
|
|
np.array([0, 0]), |
|
420
|
|
|
np.array([-10, 10]), |
|
421
|
|
|
np.array([10, 10]), |
|
422
|
|
|
np.array([0, 0]), |
|
423
|
|
|
np.array([-10, 10]), |
|
424
|
|
|
np.array([10, 10]), |
|
425
|
|
|
np.array([0, 0]), |
|
426
|
|
|
] |
|
427
|
|
|
|
|
428
|
|
|
positions_1 = [ |
|
429
|
|
|
np.array([0, 10]), |
|
430
|
|
|
np.array([20, 10]), |
|
431
|
|
|
np.array([10, 0]), |
|
432
|
|
|
np.array([0, 10]), |
|
433
|
|
|
np.array([20, 10]), |
|
434
|
|
|
np.array([10, 0]), |
|
435
|
|
|
np.array([0, 10]), |
|
436
|
|
|
np.array([20, 10]), |
|
437
|
|
|
np.array([10, 0]), |
|
438
|
|
|
] |
|
439
|
|
|
|
|
440
|
|
|
|
|
441
|
|
|
positions2values_test_para_1 = [ |
|
442
|
|
|
(positions_0, values_0), |
|
443
|
|
|
(positions_1, values_1), |
|
444
|
|
|
] |
|
445
|
|
|
|
|
446
|
|
|
|
|
447
|
|
|
@pytest.mark.parametrize("test_input,expected", positions2values_test_para_1) |
|
448
|
|
|
def test_positions2values_1(test_input, expected): |
|
449
|
|
|
search_space = { |
|
450
|
|
|
"x1": np.arange(-10, 11, 1), |
|
451
|
|
|
"x2": np.arange(0, 11, 1), |
|
452
|
|
|
} |
|
453
|
|
|
|
|
454
|
|
|
conv = Converter(search_space) |
|
455
|
|
|
order = ["x1", "x2"] |
|
456
|
|
|
conv = unordered_dict_workaround(conv, order) |
|
457
|
|
|
values = conv.positions2values(test_input) |
|
458
|
|
|
|
|
459
|
|
|
assert equal_arraysInList(values, expected) |
|
460
|
|
|
|
|
461
|
|
|
|
|
462
|
|
|
""" --- test positions_scores2memory_dict --- """ |
|
463
|
|
|
|
|
464
|
|
|
|
|
465
|
|
|
positions_0 = [ |
|
466
|
|
|
np.array([0, 10]), |
|
467
|
|
|
np.array([20, 10]), |
|
468
|
|
|
np.array([10, 0]), |
|
469
|
|
|
] |
|
470
|
|
|
|
|
471
|
|
|
scores_0 = [0.1, 0.2, 0.3] |
|
472
|
|
|
|
|
473
|
|
|
|
|
474
|
|
|
memory_dict_0 = { |
|
475
|
|
|
(0, 10): Result(0.1, {}), |
|
476
|
|
|
(20, 10): Result(0.2, {}), |
|
477
|
|
|
(10, 0): Result(0.3, {}), |
|
478
|
|
|
} |
|
479
|
|
|
|
|
480
|
|
|
positions_scores2memory_dict_test_para_0 = [ |
|
481
|
|
|
((positions_0, scores_0), memory_dict_0), |
|
482
|
|
|
# ((positions_1, scores_1), values_1), |
|
483
|
|
|
] |
|
484
|
|
|
|
|
485
|
|
|
|
|
486
|
|
|
@pytest.mark.parametrize( |
|
487
|
|
|
"test_input,expected", positions_scores2memory_dict_test_para_0 |
|
488
|
|
|
) |
|
489
|
|
|
def test_positions_scores2memory_dict_0(test_input, expected): |
|
490
|
|
|
search_space = { |
|
491
|
|
|
"x1": np.arange(-10, 11, 1), |
|
492
|
|
|
"x2": np.arange(0, 11, 1), |
|
493
|
|
|
} |
|
494
|
|
|
|
|
495
|
|
|
conv = Converter(search_space) |
|
496
|
|
|
order = ["x1", "x2"] |
|
497
|
|
|
conv = unordered_dict_workaround(conv, order) |
|
498
|
|
|
memory_dict = conv.positions_scores2memory_dict(*test_input) |
|
499
|
|
|
|
|
500
|
|
|
assert memory_dict == expected |
|
501
|
|
|
|
|
502
|
|
|
|
|
503
|
|
|
""" --- test memory_dict2positions_scores --- """ |
|
504
|
|
|
|
|
505
|
|
|
|
|
506
|
|
|
positions_0 = [ |
|
507
|
|
|
np.array([0, 10]), |
|
508
|
|
|
np.array([20, 10]), |
|
509
|
|
|
np.array([10, 0]), |
|
510
|
|
|
] |
|
511
|
|
|
|
|
512
|
|
|
scores_0 = [0.1, 0.2, 0.3] |
|
513
|
|
|
|
|
514
|
|
|
|
|
515
|
|
|
memory_dict_0 = { |
|
516
|
|
|
(0, 10): Result(0.1, {}), |
|
517
|
|
|
(20, 10): Result(0.2, {}), |
|
518
|
|
|
(10, 0): Result(0.3, {}), |
|
519
|
|
|
} |
|
520
|
|
|
|
|
521
|
|
|
memory_dict2positions_scores_test_para_0 = [ |
|
522
|
|
|
(memory_dict_0, (positions_0, scores_0)), |
|
523
|
|
|
] |
|
524
|
|
|
|
|
525
|
|
|
|
|
526
|
|
|
@pytest.mark.parametrize( |
|
527
|
|
|
"test_input,expected", memory_dict2positions_scores_test_para_0 |
|
528
|
|
|
) |
|
529
|
|
|
def test_memory_dict2positions_scores_0(test_input, expected): |
|
530
|
|
|
search_space = { |
|
531
|
|
|
"x1": np.arange(-10, 11, 1), |
|
532
|
|
|
"x2": np.arange(0, 11, 1), |
|
533
|
|
|
} |
|
534
|
|
|
|
|
535
|
|
|
conv = Converter(search_space) |
|
536
|
|
|
order = ["x1", "x2"] |
|
537
|
|
|
conv = unordered_dict_workaround(conv, order) |
|
538
|
|
|
positions, scores = conv.memory_dict2positions_scores(test_input) |
|
539
|
|
|
|
|
540
|
|
|
idx_order = get_idx_order(scores, expected[1]) |
|
541
|
|
|
scores_reordered = reorder(scores, idx_order) |
|
542
|
|
|
positions_reordered = reorder(positions, idx_order) |
|
543
|
|
|
|
|
544
|
|
|
assert equal_arraysInList(positions_reordered, expected[0]) |
|
545
|
|
|
assert scores_reordered == expected[1] |
|
546
|
|
|
|
|
547
|
|
|
|
|
548
|
|
|
""" --- test dataframe2memory_dict --- """ |
|
549
|
|
|
|
|
550
|
|
|
|
|
551
|
|
|
dataframe0 = pd.DataFrame( |
|
552
|
|
|
[[-10, 10, 0.1], [10, 10, 0.2], [0, 0, 0.3]], columns=["x1", "x2", "score"] |
|
553
|
|
|
) |
|
554
|
|
|
|
|
555
|
|
|
dataframe1 = pd.DataFrame( |
|
556
|
|
|
[[-10, 0.1], [10, 0.2], [0, 0.3]], columns=["x1", "score"] |
|
557
|
|
|
) |
|
558
|
|
|
|
|
559
|
|
|
memory_dict_0 = { |
|
560
|
|
|
(0, 10): Result(0.1, {}), |
|
561
|
|
|
(20, 10): Result(0.2, {}), |
|
562
|
|
|
(10, 0): Result(0.3, {}), |
|
563
|
|
|
} |
|
564
|
|
|
|
|
565
|
|
|
dataframe2memory_dict_test_para_0 = [ |
|
566
|
|
|
(dataframe0, memory_dict_0), |
|
567
|
|
|
(dataframe1, {}), |
|
568
|
|
|
] |
|
569
|
|
|
|
|
570
|
|
|
|
|
571
|
|
|
@pytest.mark.parametrize( |
|
572
|
|
|
"test_input,expected", dataframe2memory_dict_test_para_0 |
|
573
|
|
|
) |
|
574
|
|
|
def test_dataframe2memory_dict_0(test_input, expected): |
|
575
|
|
|
search_space = { |
|
576
|
|
|
"x1": np.arange(-10, 11, 1), |
|
577
|
|
|
"x2": np.arange(0, 11, 1), |
|
578
|
|
|
} |
|
579
|
|
|
|
|
580
|
|
|
conv = Converter(search_space) |
|
581
|
|
|
order = ["x1", "x2"] |
|
582
|
|
|
conv = unordered_dict_workaround(conv, order) |
|
583
|
|
|
memory_dict = conv.dataframe2memory_dict(test_input) |
|
584
|
|
|
|
|
585
|
|
|
assert memory_dict == expected |
|
586
|
|
|
|
|
587
|
|
|
|
|
588
|
|
|
""" --- test memory_dict2dataframe --- """ |
|
589
|
|
|
|
|
590
|
|
|
|
|
591
|
|
|
dataframe = pd.DataFrame( |
|
592
|
|
|
[[-10, 10, 0.1], [10, 10, 0.2], [0, 0, 0.3]], columns=["x1", "x2", "score"] |
|
593
|
|
|
) |
|
594
|
|
|
|
|
595
|
|
|
|
|
596
|
|
|
memory_dict_0 = { |
|
597
|
|
|
(0, 10): Result(0.1, {}), |
|
598
|
|
|
(20, 10): Result(0.2, {}), |
|
599
|
|
|
(10, 0): Result(0.3, {}), |
|
600
|
|
|
} |
|
601
|
|
|
|
|
602
|
|
|
memory_dict2dataframe_test_para_0 = [ |
|
603
|
|
|
(memory_dict_0, dataframe), |
|
604
|
|
|
] |
|
605
|
|
|
|
|
606
|
|
|
|
|
607
|
|
|
@pytest.mark.parametrize( |
|
608
|
|
|
"test_input,expected", memory_dict2dataframe_test_para_0 |
|
609
|
|
|
) |
|
610
|
|
|
def test_memory_dict2dataframe_0(test_input, expected): |
|
611
|
|
|
search_space = { |
|
612
|
|
|
"x1": np.arange(-10, 11, 1), |
|
613
|
|
|
"x2": np.arange(0, 11, 1), |
|
614
|
|
|
} |
|
615
|
|
|
|
|
616
|
|
|
conv = Converter(search_space) |
|
617
|
|
|
order = ["x1", "x2"] |
|
618
|
|
|
conv = unordered_dict_workaround(conv, order) |
|
619
|
|
|
dataframe = conv.memory_dict2dataframe(test_input) |
|
620
|
|
|
|
|
621
|
|
|
dataframe.sort_values("score", inplace=True) |
|
622
|
|
|
expected.sort_values("score", inplace=True) |
|
623
|
|
|
|
|
624
|
|
|
dataframe.reset_index(drop=True, inplace=True) |
|
625
|
|
|
expected.reset_index(drop=True, inplace=True) |
|
626
|
|
|
|
|
627
|
|
|
dataframe = dataframe[expected.columns] |
|
628
|
|
|
|
|
629
|
|
|
dataframe[dataframe.select_dtypes(include=["number"]).columns] = ( |
|
630
|
|
|
dataframe.select_dtypes(include=["number"]).astype("int") |
|
631
|
|
|
) |
|
632
|
|
|
expected[expected.select_dtypes(include=["number"]).columns] = ( |
|
633
|
|
|
expected.select_dtypes(include=["number"]).astype("int") |
|
634
|
|
|
) |
|
635
|
|
|
assert dataframe.equals(expected) |
|
636
|
|
|
|