test_attributes_best_para_1()   A
last analyzed

Complexity

Conditions 1

Size

Total Lines 5
Code Lines 4

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 4
nop 0
dl 0
loc 5
rs 10
c 0
b 0
f 0
1
import time
2
import numpy as np
3
import pandas as pd
4
from sklearn.datasets import load_breast_cancer
5
from sklearn.model_selection import cross_val_score
6
from sklearn.tree import DecisionTreeClassifier
7
from gradient_free_optimizers import RandomSearchOptimizer
8
9
10
def objective_function(para):
11
    score = -para["x1"] * para["x1"]
12
    return score
13
14
15
search_space = {
16
    "x1": np.arange(0, 100000, 0.1),
17
}
18
19
20
def test_attributes_best_score_0():
21
    opt = RandomSearchOptimizer(search_space)
22
    opt.search(objective_function, n_iter=100)
23
24
    assert np.inf > opt.best_score > -np.inf
25
26
27
def test_attributes_best_para_0():
28
    opt = RandomSearchOptimizer(search_space)
29
    opt.search(objective_function, n_iter=100)
30
31
    assert isinstance(opt.best_para, dict)
32
33
34
def test_attributes_best_para_1():
35
    opt = RandomSearchOptimizer(search_space)
36
    opt.search(objective_function, n_iter=100)
37
38
    assert list(opt.best_para.keys()) == list(search_space.keys())
39
40
41
def test_attributes_eval_times_0():
42
    opt = RandomSearchOptimizer(search_space)
43
    opt.search(objective_function, n_iter=100)
44
45
    assert isinstance(opt.eval_times, list)
46
47
48
def test_attributes_eval_times_1():
49
    c_time = time.time()
50
    opt = RandomSearchOptimizer(search_space)
51
    opt.search(objective_function, n_iter=100)
52
    diff_time = time.time() - c_time
53
54
    assert np.array(opt.eval_times).sum() < diff_time
55
56
57
def test_attributes_iter_times_0():
58
    opt = RandomSearchOptimizer(search_space)
59
    opt.search(objective_function, n_iter=100)
60
61
    assert isinstance(opt.iter_times, list)
62
63
64
def test_attributes_iter_times_1():
65
    c_time = time.time()
66
    opt = RandomSearchOptimizer(search_space)
67
    opt.search(objective_function, n_iter=100)
68
    diff_time = time.time() - c_time
69
70
    assert np.array(opt.iter_times).sum() < diff_time
71