Conditions | 1 |
Total Lines | 10 |
Code Lines | 8 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
1 | import numpy as np |
||
13 | def model(para): |
||
14 | gbc = GradientBoostingClassifier( |
||
15 | n_estimators=para["n_estimators"], |
||
16 | max_depth=para["max_depth"], |
||
17 | min_samples_split=para["min_samples_split"], |
||
18 | min_samples_leaf=para["min_samples_leaf"], |
||
19 | ) |
||
20 | scores = cross_val_score(gbc, X, y, cv=3) |
||
21 | |||
22 | return scores.mean() |
||
23 | |||
34 |