1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import math |
6
|
|
|
import numpy as np |
7
|
|
|
|
8
|
|
|
from ..core_optimizer import CoreOptimizer |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
def split(positions_l, population): |
12
|
|
|
div_int = math.ceil(len(positions_l) / population) |
13
|
|
|
dist_init_positions = [] |
14
|
|
|
|
15
|
|
|
for nth_indiv in range(population): |
16
|
|
|
indiv_pos = [] |
17
|
|
|
for nth_indiv_pos in range(div_int): |
18
|
|
|
idx = nth_indiv + nth_indiv_pos * population |
19
|
|
|
if idx < len(positions_l): |
20
|
|
|
indiv_pos.append(positions_l[idx]) |
21
|
|
|
|
22
|
|
|
dist_init_positions.append(indiv_pos) |
23
|
|
|
|
24
|
|
|
return dist_init_positions |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
class BasePopulationOptimizer(CoreOptimizer): |
28
|
|
|
def __init__( |
29
|
|
|
self, |
30
|
|
|
search_space, |
31
|
|
|
initialize={"grid": 4, "random": 2, "vertices": 4}, |
32
|
|
|
constraints=[], |
33
|
|
|
random_state=None, |
34
|
|
|
rand_rest_p=0, |
35
|
|
|
nth_process=None, |
36
|
|
|
): |
37
|
|
|
super().__init__( |
38
|
|
|
search_space=search_space, |
39
|
|
|
initialize=initialize, |
40
|
|
|
constraints=constraints, |
41
|
|
|
random_state=random_state, |
42
|
|
|
rand_rest_p=rand_rest_p, |
43
|
|
|
nth_process=nth_process, |
44
|
|
|
) |
45
|
|
|
|
46
|
|
|
self.eval_times = [] |
47
|
|
|
self.iter_times = [] |
48
|
|
|
|
49
|
|
|
self.init_done = False |
50
|
|
|
|
51
|
|
|
def _iterations(self, positioners): |
52
|
|
|
nth_iter = 0 |
53
|
|
|
for p in positioners: |
54
|
|
|
nth_iter = nth_iter + len(p.pos_new_list) |
55
|
|
|
|
56
|
|
|
return nth_iter |
57
|
|
|
|
58
|
|
|
def sort_pop_best_score(self): |
59
|
|
|
scores_list = [] |
60
|
|
|
for _p_ in self.optimizers: |
61
|
|
|
scores_list.append(_p_.score_current) |
62
|
|
|
|
63
|
|
|
scores_np = np.array(scores_list) |
64
|
|
|
idx_sorted_ind = list(scores_np.argsort()[::-1]) |
65
|
|
|
|
66
|
|
|
self.pop_sorted = [self.optimizers[i] for i in idx_sorted_ind] |
67
|
|
|
|
68
|
|
|
def _create_population(self, Optimizer): |
69
|
|
|
if isinstance(self.population, int): |
70
|
|
|
pop_size = self.population |
71
|
|
|
else: |
72
|
|
|
pop_size = len(self.population) |
73
|
|
|
diff_init = pop_size - self.init.n_inits |
74
|
|
|
|
75
|
|
|
if diff_init > 0: |
76
|
|
|
self.init.add_n_random_init_pos(diff_init) |
77
|
|
|
|
78
|
|
|
if isinstance(self.population, int): |
79
|
|
|
distributed_init_positions = split( |
80
|
|
|
self.init.init_positions_l, self.population |
81
|
|
|
) |
82
|
|
|
|
83
|
|
|
population = [] |
84
|
|
|
for init_positions in distributed_init_positions: |
85
|
|
|
init_values = self.conv.positions2values(init_positions) |
86
|
|
|
init_paras = self.conv.values2paras(init_values) |
87
|
|
|
|
88
|
|
|
population.append( |
89
|
|
|
Optimizer( |
90
|
|
|
self.conv.search_space, |
91
|
|
|
rand_rest_p=self.rand_rest_p, |
92
|
|
|
initialize={"warm_start": init_paras}, |
93
|
|
|
constraints=self.constraints, |
94
|
|
|
) |
95
|
|
|
) |
96
|
|
|
else: |
97
|
|
|
population = self.population |
98
|
|
|
|
99
|
|
|
return population |
100
|
|
|
|
101
|
|
|
@CoreOptimizer.track_new_score |
102
|
|
|
def evaluate_init(self, score_new): |
103
|
|
|
self.p_current.evaluate_init(score_new) |
104
|
|
|
|
105
|
|
|
def finish_initialization(self): |
106
|
|
|
self.search_state = "iter" |
107
|
|
|
|