1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
|
7
|
|
|
from ..smb_opt.smbo import SMBO |
8
|
|
|
|
9
|
|
|
from scipy.spatial.distance import cdist |
10
|
|
|
|
11
|
|
|
|
12
|
|
|
class LipschitzFunction: |
13
|
|
|
def __init__(self, position_l): |
14
|
|
|
self.position_l = position_l |
15
|
|
|
|
16
|
|
|
def find_best_slope(self, X_sample, Y_sample): |
17
|
|
|
slopes = [] |
18
|
|
|
|
19
|
|
|
len_sample = len(X_sample) |
20
|
|
|
for i in range(len_sample): |
21
|
|
|
for j in range(i + 1, len_sample): |
22
|
|
|
x_sample1, y_sample1 = X_sample[i], Y_sample[i] |
23
|
|
|
x_sample2, y_sample2 = X_sample[j], Y_sample[j] |
24
|
|
|
|
25
|
|
|
if y_sample1 != y_sample2 and np.prod((x_sample1 - x_sample2)) != 0: |
26
|
|
|
slopes.append( |
27
|
|
|
abs(y_sample1 - y_sample2) / abs(x_sample1 - x_sample2) |
28
|
|
|
) |
29
|
|
|
|
30
|
|
|
if not slopes: |
31
|
|
|
return 1 |
32
|
|
|
return np.max(slopes) |
33
|
|
|
|
34
|
|
|
def calculate(self, X_sample, Y_sample, score_best): |
35
|
|
|
lip_c = self.find_best_slope(X_sample, Y_sample) |
36
|
|
|
|
37
|
|
|
positions_np = np.array(self.position_l) |
38
|
|
|
samples_np = np.array(X_sample) |
39
|
|
|
|
40
|
|
|
pos_dist = cdist(positions_np, samples_np) * lip_c |
41
|
|
|
|
42
|
|
|
upper_bound_l = pos_dist |
43
|
|
|
upper_bound_l += np.array(Y_sample) |
44
|
|
|
|
45
|
|
|
mx = np.ma.masked_array(upper_bound_l, mask=upper_bound_l == 0) |
46
|
|
|
upper_bound_l = mx.min(1).reshape(1, -1).T |
47
|
|
|
upper_bound_l[upper_bound_l <= score_best] = -np.inf |
48
|
|
|
|
49
|
|
|
return upper_bound_l |
50
|
|
|
|
51
|
|
|
|
52
|
|
|
class LipschitzOptimizer(SMBO): |
53
|
|
|
name = "Lipschitz Optimizer" |
54
|
|
|
_name_ = "lipschitz_optimizer" |
55
|
|
|
__name__ = "LipschitzOptimizer" |
56
|
|
|
|
57
|
|
|
optimizer_type = "sequential" |
58
|
|
|
computationally_expensive = True |
59
|
|
|
|
60
|
|
View Code Duplication |
def __init__( |
|
|
|
|
61
|
|
|
self, |
62
|
|
|
search_space, |
63
|
|
|
initialize={"grid": 4, "random": 2, "vertices": 4}, |
64
|
|
|
constraints=[], |
65
|
|
|
random_state=None, |
66
|
|
|
rand_rest_p=0, |
67
|
|
|
nth_process=None, |
68
|
|
|
warm_start_smbo=None, |
69
|
|
|
max_sample_size=10000000, |
70
|
|
|
sampling={"random": 1000000}, |
71
|
|
|
replacement=True, |
72
|
|
|
): |
73
|
|
|
super().__init__( |
74
|
|
|
search_space=search_space, |
75
|
|
|
initialize=initialize, |
76
|
|
|
constraints=constraints, |
77
|
|
|
random_state=random_state, |
78
|
|
|
rand_rest_p=rand_rest_p, |
79
|
|
|
nth_process=nth_process, |
80
|
|
|
warm_start_smbo=warm_start_smbo, |
81
|
|
|
max_sample_size=max_sample_size, |
82
|
|
|
sampling=sampling, |
83
|
|
|
replacement=replacement, |
84
|
|
|
) |
85
|
|
|
|
86
|
|
|
def finish_initialization(self): |
87
|
|
|
self.all_pos_comb = self._all_possible_pos() |
88
|
|
|
return super().finish_initialization() |
89
|
|
|
|
90
|
|
|
@SMBO.track_new_pos |
91
|
|
|
@SMBO.track_X_sample |
92
|
|
|
def iterate(self): |
93
|
|
|
self.pos_comb = self._sampling(self.all_pos_comb) |
94
|
|
|
|
95
|
|
|
lip_func = LipschitzFunction(self.pos_comb) |
96
|
|
|
upper_bound_l = lip_func.calculate( |
97
|
|
|
self.X_sample, self.Y_sample, self.score_best |
98
|
|
|
) |
99
|
|
|
|
100
|
|
|
index_best = list(upper_bound_l.argsort()[::-1]) |
101
|
|
|
all_pos_comb_sorted = self.pos_comb[index_best] |
102
|
|
|
pos_best = all_pos_comb_sorted[0] |
103
|
|
|
|
104
|
|
|
return pos_best |
105
|
|
|
|