1 | import functools |
||
2 | import operator |
||
3 | import pathlib |
||
4 | from typing import Final, List, Tuple |
||
5 | |||
6 | BOARD_SIZE: Final[int] = 99 |
||
7 | |||
8 | |||
9 | def get_neighbours_tree(board: List[str], x: int, y: int) -> Tuple[str, str, str, str]: |
||
10 | return ( |
||
11 | board[y][:x][::-1], |
||
12 | board[y][x + 1:], |
||
13 | ''.join(line[x] for line in board[:y])[::-1], |
||
14 | ''.join(line[x] for line in board[y + 1:]) |
||
15 | ) |
||
16 | |||
17 | |||
18 | def count_visible(board: List[str]) -> int: |
||
19 | def is_visible(x, y) -> bool: |
||
20 | return any( |
||
21 | board[y][x] > max(trees) |
||
22 | for trees in get_neighbours_tree(board, x, y) |
||
23 | ) |
||
24 | |||
25 | return sum( |
||
26 | is_visible(x, y) |
||
27 | for x in range(1, BOARD_SIZE - 1) |
||
28 | for y in range(1, BOARD_SIZE - 1) |
||
29 | ) + (BOARD_SIZE - 1) * 4 |
||
30 | |||
31 | |||
32 | def get_highest_scenic_score(board: List[str]) -> int: |
||
33 | def scenic_core(x: int, y: int) -> int: |
||
34 | return functools.reduce( |
||
35 | operator.mul, |
||
36 | ( |
||
37 | get_first_non_visible_from(board[y][x], trees) |
||
0 ignored issues
–
show
Comprehensibility
Best Practice
introduced
by
![]() |
|||
38 | for trees in get_neighbours_tree(board, x, y) |
||
39 | ) |
||
40 | ) |
||
41 | |||
42 | def get_first_non_visible_from(h: str, trees: str) -> int: |
||
43 | for idx, tree in enumerate(trees, start=1): |
||
44 | if tree >= h: |
||
45 | return idx |
||
46 | return len(trees) |
||
47 | |||
48 | return max( |
||
49 | scenic_core(x, y) |
||
50 | for x in range(BOARD_SIZE) |
||
51 | for y in range(BOARD_SIZE) |
||
52 | ) |
||
53 | |||
54 | |||
55 | def main(): |
||
56 | content = pathlib.Path('./input.txt').read_text() |
||
57 | board = [line for line in content.splitlines()] |
||
58 | |||
59 | print('Part 1:', count_visible(board)) |
||
60 | print('Part 2:', get_highest_scenic_score(board)) |
||
61 | |||
62 | |||
63 | if __name__ == '__main__': |
||
64 | main() |
||
65 |