| Total Complexity | 41 |
| Total Lines | 620 |
| Duplicated Lines | 18.87 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like responsibly.fairness.interventions.threshold often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """ |
||
| 2 | Post-processing fairness intervension by choosing thresholds. |
||
| 3 | |||
| 4 | There are multiple definitions for choosing the thresholds: |
||
| 5 | |||
| 6 | 1. Single threshold for all the sensitive attribute values |
||
| 7 | that minimizes cost. |
||
| 8 | 2. A threshold for each sensitive attribute value |
||
| 9 | that minimize cost. |
||
| 10 | 3. A threshold for each sensitive attribute value |
||
| 11 | that achieve independence and minimize cost. |
||
| 12 | 4. A threshold for each sensitive attribute value |
||
| 13 | that achieve equal FNR (equal opportunity) and minimize cost. |
||
| 14 | 5. A threshold for each sensitive attribute value |
||
| 15 | that achieve seperation (equalized odds) and minimize cost. |
||
| 16 | |||
| 17 | The code is based on `fairmlbook repository <https://github.com/fairmlbook/fairmlbook.github.io>`_. |
||
| 18 | |||
| 19 | References: |
||
| 20 | - Hardt, M., Price, E., & Srebro, N. (2016). |
||
| 21 | `Equality of opportunity in supervised learning |
||
| 22 | <https://arxiv.org/abs/1610.02413>`_ |
||
| 23 | In Advances in neural information processing systems |
||
| 24 | (pp. 3315-3323). |
||
| 25 | - `Attacking discrimination with |
||
| 26 | smarter machine learning by Google |
||
| 27 | <https://research.google.com/bigpicture/attacking-discrimination-in-ml/>`_. |
||
| 28 | |||
| 29 | """ |
||
| 30 | |||
| 31 | # pylint: disable=no-name-in-module |
||
| 32 | |||
| 33 | import matplotlib.pylab as plt |
||
| 34 | import numpy as np |
||
| 35 | import pandas as pd |
||
| 36 | from scipy.spatial import Delaunay |
||
| 37 | |||
| 38 | from responsibly.fairness.metrics.visualization import plot_roc_curves |
||
| 39 | |||
| 40 | |||
| 41 | def _ternary_search_float(f, left, right, tol): |
||
| 42 | """Trinary search: minimize f(x) over [left, right], to within +/-tol in x. |
||
| 43 | |||
| 44 | Works assuming f is quasiconvex. |
||
| 45 | |||
| 46 | """ |
||
| 47 | while right - left > tol: |
||
| 48 | left_third = (2 * left + right) / 3 |
||
| 49 | right_third = (left + 2 * right) / 3 |
||
| 50 | if f(left_third) < f(right_third): |
||
| 51 | right = right_third |
||
| 52 | else: |
||
| 53 | left = left_third |
||
| 54 | return (right + left) / 2 |
||
| 55 | |||
| 56 | |||
| 57 | def _ternary_search_domain(f, domain): |
||
| 58 | """Trinary search: minimize f(x) over a domain (sequence). |
||
| 59 | |||
| 60 | Works assuming f is quasiconvex and domain is ascending sorted. |
||
| 61 | |||
| 62 | """ |
||
| 63 | left = 0 |
||
| 64 | right = len(domain) - 1 |
||
| 65 | changed = True |
||
| 66 | |||
| 67 | while changed and left != right: |
||
| 68 | |||
| 69 | changed = False |
||
| 70 | |||
| 71 | left_third = (2 * left + right) // 3 |
||
| 72 | right_third = (left + 2 * right) // 3 |
||
| 73 | |||
| 74 | if f(domain[left_third]) < f(domain[right_third]): |
||
| 75 | right = right_third - 1 |
||
| 76 | changed = True |
||
| 77 | else: |
||
| 78 | left = left_third + 1 |
||
| 79 | changed = True |
||
| 80 | |||
| 81 | return domain[(left + right) // 2] |
||
| 82 | |||
| 83 | |||
| 84 | def _cost_function(fpr, tpr, base_rate, cost_matrix): |
||
| 85 | """Compute the cost of given (fpr, tpr). |
||
| 86 | |||
| 87 | [[tn, fp], [fn, tp]] |
||
| 88 | """ |
||
| 89 | |||
| 90 | fp = fpr * (1 - base_rate) |
||
| 91 | tn = (1 - base_rate) - fp |
||
| 92 | tp = tpr * base_rate |
||
| 93 | fn = base_rate - tp |
||
| 94 | |||
| 95 | conf_matrix = np.array([tn, fp, fn, tp]) |
||
| 96 | |||
| 97 | return (conf_matrix * np.array(cost_matrix).ravel()).sum() |
||
| 98 | |||
| 99 | |||
| 100 | def _extract_threshold(roc_curves): |
||
| 101 | return next(iter(roc_curves.values()))[2] |
||
| 102 | |||
| 103 | |||
| 104 | def _first_index_above(array, value): |
||
| 105 | """Find the smallest index i for which array[i] > value. |
||
| 106 | |||
| 107 | If no such value exists, return len(array). |
||
| 108 | """ |
||
| 109 | array = np.array(array) |
||
| 110 | v = np.concatenate([array > value, np.ones_like(array[-1:])]) |
||
| 111 | return np.argmax(v, axis=0) |
||
| 112 | |||
| 113 | |||
| 114 | def _calc_acceptance_rate(fpr, tpr, base_rate): |
||
| 115 | return 1 - ((fpr * (1 - base_rate) |
||
| 116 | + tpr * base_rate)) |
||
| 117 | |||
| 118 | |||
| 119 | def find_single_threshold(roc_curves, base_rates, proportions, |
||
| 120 | cost_matrix): |
||
| 121 | """Compute single threshold that minimizes cost. |
||
| 122 | |||
| 123 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 124 | by attribute. |
||
| 125 | :type roc_curves: dict |
||
| 126 | :param base_rates: Base rate by attribute. |
||
| 127 | :type base_rates: dict |
||
| 128 | :param proportions: Proportion of each attribute value. |
||
| 129 | :type proportions: dict |
||
| 130 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
| 131 | :type cost_matrix: sequence |
||
| 132 | :return: Threshold, FPR and TPR by attribute and cost value. |
||
| 133 | :rtype: tuple |
||
| 134 | |||
| 135 | """ |
||
| 136 | |||
| 137 | def total_cost_function(index): |
||
| 138 | total_cost = 0 |
||
| 139 | |||
| 140 | for group, roc in roc_curves.items(): |
||
| 141 | fpr = roc[0][index] |
||
| 142 | tpr = roc[1][index] |
||
| 143 | |||
| 144 | group_cost = _cost_function(fpr, tpr, |
||
| 145 | base_rates[group], cost_matrix) |
||
| 146 | group_cost *= proportions[group] |
||
| 147 | |||
| 148 | total_cost += group_cost |
||
| 149 | |||
| 150 | return -total_cost |
||
| 151 | |||
| 152 | thresholds = _extract_threshold(roc_curves) |
||
| 153 | |||
| 154 | cutoff_index = _ternary_search_domain(total_cost_function, |
||
| 155 | range(len(thresholds))) |
||
| 156 | |||
| 157 | fpr_tpr = {group: (roc[0][cutoff_index], roc[1][cutoff_index]) |
||
| 158 | for group, roc in roc_curves.items()} |
||
| 159 | |||
| 160 | cost = total_cost_function(cutoff_index) |
||
| 161 | |||
| 162 | return thresholds[cutoff_index], fpr_tpr, cost |
||
| 163 | |||
| 164 | |||
| 165 | def find_min_cost_thresholds(roc_curves, base_rates, cost_matrix): |
||
| 166 | """Compute thresholds by attribute values that minimize cost. |
||
| 167 | |||
| 168 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 169 | by attribute. |
||
| 170 | :type roc_curves: dict |
||
| 171 | :param base_rates: Base rate by attribute. |
||
| 172 | :type base_rates: dict |
||
| 173 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
| 174 | :type cost_matrix: sequence |
||
| 175 | :return: Thresholds, FPR and TPR by attribute and cost value. |
||
| 176 | :rtype: tuple |
||
| 177 | |||
| 178 | """ |
||
| 179 | # pylint: disable=cell-var-from-loop |
||
| 180 | |||
| 181 | cutoffs = {} |
||
| 182 | fpr_tpr = {} |
||
| 183 | |||
| 184 | cost = 0 |
||
| 185 | thresholds = _extract_threshold(roc_curves) |
||
| 186 | |||
| 187 | for group, roc in roc_curves.items(): |
||
| 188 | def group_cost_function(index): |
||
| 189 | fpr = roc[0][index] |
||
| 190 | tpr = roc[1][index] |
||
| 191 | return -_cost_function(fpr, tpr, |
||
| 192 | base_rates[group], cost_matrix) |
||
| 193 | |||
| 194 | threshold_index = _ternary_search_domain(group_cost_function, |
||
| 195 | range(len(thresholds))) |
||
| 196 | |||
| 197 | cutoffs[group] = thresholds[threshold_index] |
||
| 198 | |||
| 199 | fpr_tpr[group] = (roc[0][threshold_index], |
||
| 200 | roc[1][threshold_index]) |
||
| 201 | |||
| 202 | cost += group_cost_function(threshold_index) |
||
| 203 | |||
| 204 | return cutoffs, fpr_tpr, cost |
||
| 205 | |||
| 206 | |||
| 207 | def get_acceptance_rate_indices(roc_curves, base_rates, |
||
| 208 | acceptance_rate_value): |
||
| 209 | indices = {} |
||
| 210 | for group, roc in roc_curves.items(): |
||
| 211 | # can be calculated outside the function |
||
| 212 | acceptance_rates = _calc_acceptance_rate(fpr=roc[0], |
||
| 213 | tpr=roc[1], |
||
| 214 | base_rate=base_rates[group]) |
||
| 215 | |||
| 216 | index = _first_index_above(acceptance_rates, |
||
| 217 | (1 - acceptance_rate_value)) - 2 |
||
| 218 | |||
| 219 | indices[group] = index |
||
| 220 | |||
| 221 | return indices |
||
| 222 | |||
| 223 | |||
| 224 | View Code Duplication | def find_independence_thresholds(roc_curves, base_rates, proportions, |
|
| 225 | cost_matrix): |
||
| 226 | """Compute thresholds that achieve independence and minimize cost. |
||
| 227 | |||
| 228 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 229 | by attribute. |
||
| 230 | :type roc_curves: dict |
||
| 231 | :param base_rates: Base rate by attribute. |
||
| 232 | :type base_rates: dict |
||
| 233 | :param proportions: Proportion of each attribute value. |
||
| 234 | :type proportions: dict |
||
| 235 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
| 236 | :type cost_matrix: sequence |
||
| 237 | :return: Thresholds, FPR and TPR by attribute and cost value. |
||
| 238 | :rtype: tuple |
||
| 239 | |||
| 240 | """ |
||
| 241 | |||
| 242 | cutoffs = {} |
||
| 243 | |||
| 244 | def total_cost_function(acceptance_rate_value): |
||
| 245 | # todo: move demo here + multiple cost |
||
| 246 | indices = get_acceptance_rate_indices(roc_curves, base_rates, |
||
| 247 | acceptance_rate_value) |
||
| 248 | |||
| 249 | total_cost = 0 |
||
| 250 | |||
| 251 | for group, roc in roc_curves.items(): |
||
| 252 | index = indices[group] |
||
| 253 | |||
| 254 | fpr = roc[0][index] |
||
| 255 | tpr = roc[1][index] |
||
| 256 | |||
| 257 | group_cost = _cost_function(fpr, tpr, |
||
| 258 | base_rates[group], |
||
| 259 | cost_matrix) |
||
| 260 | group_cost *= proportions[group] |
||
| 261 | |||
| 262 | total_cost += group_cost |
||
| 263 | |||
| 264 | return -total_cost |
||
| 265 | |||
| 266 | acceptance_rate_min_cost = _ternary_search_float(total_cost_function, |
||
| 267 | 0, 1, 1e-3) |
||
| 268 | threshold_indices = get_acceptance_rate_indices(roc_curves, base_rates, |
||
| 269 | acceptance_rate_min_cost) |
||
| 270 | |||
| 271 | thresholds = _extract_threshold(roc_curves) |
||
| 272 | |||
| 273 | cutoffs = {group: thresholds[threshold_index] |
||
| 274 | for group, threshold_index |
||
| 275 | in threshold_indices.items()} |
||
| 276 | |||
| 277 | fpr_tpr = {group: (roc[0][threshold_indices[group]], |
||
| 278 | roc[1][threshold_indices[group]]) |
||
| 279 | for group, roc in roc_curves.items()} |
||
| 280 | |||
| 281 | return cutoffs, fpr_tpr, acceptance_rate_min_cost |
||
| 282 | |||
| 283 | |||
| 284 | def get_fnr_indices(roc_curves, fnr_value): |
||
| 285 | indices = {} |
||
| 286 | for group, roc in roc_curves.items(): |
||
| 287 | tprs = roc[1] |
||
| 288 | index = _first_index_above(1 - tprs, |
||
| 289 | (1 - fnr_value)) - 1 |
||
| 290 | |||
| 291 | indices[group] = index |
||
| 292 | |||
| 293 | return indices |
||
| 294 | |||
| 295 | |||
| 296 | View Code Duplication | def find_fnr_thresholds(roc_curves, base_rates, proportions, |
|
|
|
|||
| 297 | cost_matrix): |
||
| 298 | """Compute thresholds that achieve equal FNRs and minimize cost. |
||
| 299 | |||
| 300 | Also known as **equal opportunity**. |
||
| 301 | |||
| 302 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 303 | by attribute. |
||
| 304 | :type roc_curves: dict |
||
| 305 | :param base_rates: Base rate by attribute. |
||
| 306 | :type base_rates: dict |
||
| 307 | :param proportions: Proportion of each attribute value. |
||
| 308 | :type proportions: dict |
||
| 309 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
| 310 | :type cost_matrix: sequence |
||
| 311 | :return: Thresholds, FPR and TPR by attribute and cost value. |
||
| 312 | :rtype: tuple |
||
| 313 | |||
| 314 | """ |
||
| 315 | |||
| 316 | cutoffs = {} |
||
| 317 | |||
| 318 | def total_cost_function(fnr_value): |
||
| 319 | # todo: move demo here + multiple cost |
||
| 320 | indices = get_fnr_indices(roc_curves, fnr_value) |
||
| 321 | |||
| 322 | total_cost = 0 |
||
| 323 | |||
| 324 | for group, roc in roc_curves.items(): |
||
| 325 | index = indices[group] |
||
| 326 | |||
| 327 | fpr = roc[0][index] |
||
| 328 | tpr = roc[1][index] |
||
| 329 | |||
| 330 | group_cost = _cost_function(fpr, tpr, |
||
| 331 | base_rates[group], |
||
| 332 | cost_matrix) |
||
| 333 | group_cost *= proportions[group] |
||
| 334 | |||
| 335 | total_cost += group_cost |
||
| 336 | |||
| 337 | return -total_cost |
||
| 338 | |||
| 339 | fnr_value_min_cost = _ternary_search_float(total_cost_function, |
||
| 340 | 0, 1, 1e-3) |
||
| 341 | threshold_indices = get_fnr_indices(roc_curves, fnr_value_min_cost) |
||
| 342 | |||
| 343 | cost = total_cost_function(fnr_value_min_cost) |
||
| 344 | |||
| 345 | fpr_tpr = {group: (roc[0][threshold_indices[group]], |
||
| 346 | roc[1][threshold_indices[group]]) |
||
| 347 | for group, roc in roc_curves.items()} |
||
| 348 | |||
| 349 | thresholds = _extract_threshold(roc_curves) |
||
| 350 | cutoffs = {group: thresholds[threshold_index] |
||
| 351 | for group, threshold_index |
||
| 352 | in threshold_indices.items()} |
||
| 353 | |||
| 354 | return cutoffs, fpr_tpr, cost, fnr_value_min_cost |
||
| 355 | |||
| 356 | |||
| 357 | def _find_feasible_roc(roc_curves): |
||
| 358 | polygons = [Delaunay(list(zip(fprs, tprs))) |
||
| 359 | for group, (fprs, tprs, _) in roc_curves.items()] |
||
| 360 | |||
| 361 | feasible_points = [] |
||
| 362 | |||
| 363 | for poly in polygons: |
||
| 364 | for p in poly.points: |
||
| 365 | |||
| 366 | if all(poly2.find_simplex(p) != -1 for poly2 in polygons): |
||
| 367 | feasible_points.append(p) |
||
| 368 | |||
| 369 | return np.array(feasible_points) |
||
| 370 | |||
| 371 | |||
| 372 | def find_separation_thresholds(roc_curves, base_rate, cost_matrix): |
||
| 373 | """Compute thresholds that achieve separation and minimize cost. |
||
| 374 | |||
| 375 | Also known as **equalized odds**. |
||
| 376 | |||
| 377 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 378 | by attribute. |
||
| 379 | :type roc_curves: dict |
||
| 380 | :param base_rate: Overall base rate. |
||
| 381 | :type base_rate: float |
||
| 382 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
| 383 | :type cost_matrix: sequence |
||
| 384 | :return: Thresholds, FPR and TPR by attribute and cost value. |
||
| 385 | :rtype: tuple |
||
| 386 | |||
| 387 | """ |
||
| 388 | |||
| 389 | feasible_points = _find_feasible_roc(roc_curves) |
||
| 390 | |||
| 391 | cost, (best_fpr, best_tpr) = max((_cost_function(fpr, tpr, base_rate, |
||
| 392 | cost_matrix), |
||
| 393 | (fpr, tpr)) |
||
| 394 | for fpr, tpr in feasible_points) |
||
| 395 | |||
| 396 | return {}, {'': (best_fpr, best_tpr)}, cost |
||
| 397 | |||
| 398 | |||
| 399 | def find_thresholds(roc_curves, proportions, base_rate, |
||
| 400 | base_rates, cost_matrix, |
||
| 401 | with_single=True, with_min_cost=True, |
||
| 402 | with_independence=True, with_fnr=True, |
||
| 403 | with_separation=True): |
||
| 404 | """Compute thresholds that achieve various criteria and minimize cost. |
||
| 405 | |||
| 406 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 407 | by attribute. |
||
| 408 | :type roc_curves: dict |
||
| 409 | :param proportions: Proportion of each attribute value. |
||
| 410 | :type proportions: dict |
||
| 411 | :param base_rate: Overall base rate. |
||
| 412 | :type base_rate: float |
||
| 413 | :param base_rates: Base rate by attribute. |
||
| 414 | :type base_rates: dict |
||
| 415 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
| 416 | :type cost_matrix: sequence |
||
| 417 | |||
| 418 | :param with_single: Compute single threshold. |
||
| 419 | :type with_single: bool |
||
| 420 | :param with_min_cost: Compute minimum cost thresholds. |
||
| 421 | :type with_min_cost: bool |
||
| 422 | :param with_independence: Compute independence thresholds. |
||
| 423 | :type with_independence: bool |
||
| 424 | :param with_fnr: Compute FNR thresholds. |
||
| 425 | :type with_fnr: bool |
||
| 426 | :param with_separation: Compute separation thresholds. |
||
| 427 | :type with_separation: bool |
||
| 428 | |||
| 429 | :return: Dictionary of threshold criteria, |
||
| 430 | and for each criterion: |
||
| 431 | thresholds, FPR and TPR by attribute and cost value. |
||
| 432 | :rtype: dict |
||
| 433 | |||
| 434 | """ |
||
| 435 | |||
| 436 | thresholds = {} |
||
| 437 | |||
| 438 | if with_single: |
||
| 439 | thresholds['single'] = find_single_threshold(roc_curves, |
||
| 440 | base_rates, |
||
| 441 | proportions, |
||
| 442 | cost_matrix) |
||
| 443 | |||
| 444 | if with_min_cost: |
||
| 445 | thresholds['min_cost'] = find_min_cost_thresholds(roc_curves, |
||
| 446 | base_rates, |
||
| 447 | cost_matrix) |
||
| 448 | |||
| 449 | if with_independence: |
||
| 450 | thresholds['independence'] = find_independence_thresholds(roc_curves, |
||
| 451 | base_rates, |
||
| 452 | proportions, |
||
| 453 | cost_matrix) |
||
| 454 | |||
| 455 | if with_fnr: |
||
| 456 | thresholds['fnr'] = find_fnr_thresholds(roc_curves, |
||
| 457 | base_rates, |
||
| 458 | proportions, |
||
| 459 | cost_matrix) |
||
| 460 | |||
| 461 | if with_separation: |
||
| 462 | thresholds['separation'] = find_separation_thresholds(roc_curves, |
||
| 463 | base_rate, |
||
| 464 | cost_matrix) |
||
| 465 | |||
| 466 | return thresholds |
||
| 467 | |||
| 468 | |||
| 469 | def plot_roc_curves_thresholds(roc_curves, thresholds_data, |
||
| 470 | aucs=None, |
||
| 471 | title='ROC Curves by Attribute', |
||
| 472 | ax=None, figsize=None, |
||
| 473 | title_fontsize='large', |
||
| 474 | text_fontsize='medium'): |
||
| 475 | """Generate the ROC curves by attribute with thresholds. |
||
| 476 | |||
| 477 | Based on :func:`skplt.metrics.plot_roc` |
||
| 478 | |||
| 479 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 480 | by attribute. |
||
| 481 | :type roc_curves: dict |
||
| 482 | :param thresholds_data: Thresholds by attribute from the |
||
| 483 | function |
||
| 484 | :func:`~responsibly.interventions |
||
| 485 | .threshold.find_thresholds`. |
||
| 486 | :type thresholds_data: dict |
||
| 487 | :param aucs: Area Under the ROC (AUC) by attribute. |
||
| 488 | :type aucs: dict |
||
| 489 | :param str title: Title of the generated plot. |
||
| 490 | :param ax: The axes upon which to plot the curve. |
||
| 491 | If `None`, the plot is drawn on a new set of axes. |
||
| 492 | :param tuple figsize: Tuple denoting figure size of the plot |
||
| 493 | e.g. (6, 6). |
||
| 494 | :param title_fontsize: Matplotlib-style fontsizes. |
||
| 495 | Use e.g. 'small', 'medium', 'large' |
||
| 496 | or integer-values. |
||
| 497 | :param text_fontsize: Matplotlib-style fontsizes. |
||
| 498 | Use e.g. 'small', 'medium', 'large' |
||
| 499 | or integer-values. |
||
| 500 | :return: The axes on which the plot was drawn. |
||
| 501 | :rtype: :class:`matplotlib.axes.Axes` |
||
| 502 | |||
| 503 | """ |
||
| 504 | |||
| 505 | ax = plot_roc_curves(roc_curves, aucs, |
||
| 506 | title, ax, figsize, title_fontsize, text_fontsize) |
||
| 507 | |||
| 508 | MARKERS = ['o', '^', 'x', '+', 'p'] |
||
| 509 | |||
| 510 | for (name, data), marker in zip(thresholds_data.items(), MARKERS): |
||
| 511 | label = name.replace('_', ' ').title() |
||
| 512 | ax.scatter(*zip(*data[1].values()), |
||
| 513 | marker=marker, color='k', label=label, |
||
| 514 | zorder=float('inf')) |
||
| 515 | |||
| 516 | plt.legend() |
||
| 517 | |||
| 518 | return ax |
||
| 519 | |||
| 520 | |||
| 521 | def plot_fpt_tpr(roc_curves, |
||
| 522 | title='FPR-TPR Curves by Attribute', |
||
| 523 | ax=None, figsize=None, |
||
| 524 | title_fontsize='large', text_fontsize='medium'): |
||
| 525 | """Generate FPR and TPR curves by thresholds and by attribute. |
||
| 526 | |||
| 527 | Based on :func:`skplt.metrics.plot_roc` |
||
| 528 | |||
| 529 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 530 | by attribute. |
||
| 531 | :type roc_curves: dict |
||
| 532 | :param str title: Title of the generated plot. |
||
| 533 | :param ax: The axes upon which to plot the curve. |
||
| 534 | If `None`, the plot is drawn on a new set of axes. |
||
| 535 | :param tuple figsize: Tuple denoting figure size of the plot |
||
| 536 | e.g. (6, 6). |
||
| 537 | :param title_fontsize: Matplotlib-style fontsizes. |
||
| 538 | Use e.g. 'small', 'medium', 'large' |
||
| 539 | or integer-values. |
||
| 540 | :param text_fontsize: Matplotlib-style fontsizes. |
||
| 541 | Use e.g. 'small', 'medium', 'large' |
||
| 542 | or integer-values. |
||
| 543 | :return: The axes on which the plot was drawn. |
||
| 544 | :rtype: :class:`matplotlib.axes.Axes` |
||
| 545 | |||
| 546 | """ |
||
| 547 | |||
| 548 | if ax is None: |
||
| 549 | fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable |
||
| 550 | |||
| 551 | ax.set_title(title, fontsize=title_fontsize) |
||
| 552 | |||
| 553 | thresholds = _extract_threshold(roc_curves) |
||
| 554 | |||
| 555 | prop_cycle = plt.rcParams['axes.prop_cycle'] |
||
| 556 | colors = prop_cycle.by_key()['color'] |
||
| 557 | |||
| 558 | for (group, roc), color in zip(roc_curves.items(), colors): |
||
| 559 | plt.plot(thresholds, roc[0], '-', |
||
| 560 | label='{} - FPR'.format(group), color=color) |
||
| 561 | plt.plot(thresholds, roc[1], '--', |
||
| 562 | label='{} - TPR'.format(group), color=color) |
||
| 563 | plt.legend() |
||
| 564 | |||
| 565 | ax.set_ylim([0.0, 1.05]) |
||
| 566 | ax.set_xlabel('Threshold', fontsize=text_fontsize) |
||
| 567 | ax.set_ylabel('Probability', fontsize=text_fontsize) |
||
| 568 | ax.tick_params(labelsize=text_fontsize) |
||
| 569 | ax.legend(fontsize=text_fontsize) |
||
| 570 | |||
| 571 | return ax |
||
| 572 | |||
| 573 | |||
| 574 | def plot_costs(thresholds_data, |
||
| 575 | title='Cost by Threshold', |
||
| 576 | ax=None, figsize=None, |
||
| 577 | title_fontsize='large', text_fontsize='medium'): |
||
| 578 | """Plot cost by threshold definition and by attribute. |
||
| 579 | |||
| 580 | Based on :func:`skplt.metrics.plot_roc` |
||
| 581 | |||
| 582 | :param thresholds_data: Thresholds by attribute from the |
||
| 583 | function |
||
| 584 | :func:`~responsibly.interventions |
||
| 585 | .threshold.find_thresholds`. |
||
| 586 | :type thresholds_data: dict |
||
| 587 | :param str title: Title of the generated plot. |
||
| 588 | :param ax: The axes upon which to plot the curve. |
||
| 589 | If `None`, the plot is drawn on a new set of axes. |
||
| 590 | :param tuple figsize: Tuple denoting figure size of the plot |
||
| 591 | e.g. (6, 6). |
||
| 592 | :param title_fontsize: Matplotlib-style fontsizes. |
||
| 593 | Use e.g. 'small', 'medium', 'large' |
||
| 594 | or integer-values. |
||
| 595 | :param text_fontsize: Matplotlib-style fontsizes. |
||
| 596 | Use e.g. 'small', 'medium', 'large' |
||
| 597 | or integer-values. |
||
| 598 | :return: The axes on which the plot was drawn. |
||
| 599 | :rtype: :class:`matplotlib.axes.Axes` |
||
| 600 | |||
| 601 | """ |
||
| 602 | |||
| 603 | if ax is None: |
||
| 604 | fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable |
||
| 605 | |||
| 606 | ax.set_title(title, fontsize=title_fontsize) |
||
| 607 | |||
| 608 | costs = {group.replace('_', ' ').title(): cost |
||
| 609 | for group, (_, _, cost, *_) in thresholds_data.items()} |
||
| 610 | |||
| 611 | (pd.Series(costs) |
||
| 612 | .sort_values(ascending=False) |
||
| 613 | .plot(kind='barh', ax=ax)) |
||
| 614 | |||
| 615 | ax.set_xlabel('Cost', fontsize=text_fontsize) |
||
| 616 | ax.set_ylabel('Threshold', fontsize=text_fontsize) |
||
| 617 | ax.tick_params(labelsize=text_fontsize) |
||
| 618 | |||
| 619 | return ax |
||
| 620 |