| 
                    1
                 | 
                                    
                                                     | 
                
                 | 
                import math  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    2
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    3
                 | 
                                    
                                                     | 
                
                 | 
                import gensim  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    4
                 | 
                                    
                                                     | 
                
                 | 
                import matplotlib.pylab as plt  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    5
                 | 
                                    
                                                     | 
                
                 | 
                import numpy as np  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    6
                 | 
                                    
                                                     | 
                
                 | 
                import pandas as pd  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    7
                 | 
                                    
                                                     | 
                
                 | 
                from six import string_types  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    8
                 | 
                                    
                                                     | 
                
                 | 
                from sklearn.cluster import KMeans  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    9
                 | 
                                    
                                                     | 
                
                 | 
                from sklearn.manifold import TSNE  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    10
                 | 
                                    
                                                     | 
                
                 | 
                from sklearn.metrics import accuracy_score  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    11
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    12
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    13
                 | 
                                    
                                                     | 
                
                 | 
                WORD_EMBEDDING_MODEL_TYPES = (gensim.models.keyedvectors.KeyedVectors,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    14
                 | 
                                    
                                                     | 
                
                 | 
                                              gensim.models.keyedvectors.BaseKeyedVectors,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    15
                 | 
                                    
                                                     | 
                
                 | 
                                              gensim.models.fasttext.FastText,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    16
                 | 
                                    
                                                     | 
                
                 | 
                                              gensim.models.word2vec.Word2Vec,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    17
                 | 
                                    
                                                     | 
                
                 | 
                                              gensim.models.base_any2vec.BaseWordEmbeddingsModel,)  # pylint: disable=line-too-long  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    18
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    19
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    20
                 | 
                                    
                                                     | 
                
                 | 
                def round_to_extreme(value, digits=2):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    21
                 | 
                                    
                                                     | 
                
                 | 
                    place = 10**digits  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    22
                 | 
                                    
                                                     | 
                
                 | 
                    new_value = math.ceil(abs(value) * place) / place  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    23
                 | 
                                    
                                                     | 
                
                 | 
                    if value < 0:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    24
                 | 
                                    
                                                     | 
                
                 | 
                        new_value = -new_value  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    25
                 | 
                                    
                                                     | 
                
                 | 
                    return new_value  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    26
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    27
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    28
                 | 
                                    
                                                     | 
                
                 | 
                def normalize(v):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    29
                 | 
                                    
                                                     | 
                
                 | 
                    """Normalize a 1-D vector."""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    30
                 | 
                                    
                                                     | 
                
                 | 
                    if v.ndim != 1:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    31
                 | 
                                    
                                                     | 
                
                 | 
                        raise ValueError('v should be 1-D, {}-D was given'.format( | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    32
                 | 
                                    
                                                     | 
                
                 | 
                            v.ndim))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    33
                 | 
                                    
                                                     | 
                
                 | 
                    norm = np.linalg.norm(v)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    34
                 | 
                                    
                                                     | 
                
                 | 
                    if norm == 0:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    35
                 | 
                                    
                                                     | 
                
                 | 
                        return v  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    36
                 | 
                                    
                                                     | 
                
                 | 
                    return v / norm  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    37
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    38
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    39
                 | 
                                    
                                                     | 
                
                 | 
                def cosine_similarity(v, u):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    40
                 | 
                                    
                                                     | 
                
                 | 
                    """Calculate the cosine similarity between two vectors."""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    41
                 | 
                                    
                                                     | 
                
                 | 
                    v_norm = np.linalg.norm(v)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    42
                 | 
                                    
                                                     | 
                
                 | 
                    u_norm = np.linalg.norm(u)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    43
                 | 
                                    
                                                     | 
                
                 | 
                    similarity = v @ u / (v_norm * u_norm)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    44
                 | 
                                    
                                                     | 
                
                 | 
                    return similarity  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    45
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    46
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    47
                 | 
                                    
                                                     | 
                
                 | 
                def project_vector(v, u):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    48
                 | 
                                    
                                                     | 
                
                 | 
                    """Projecting the vector v onto direction u."""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    49
                 | 
                                    
                                                     | 
                
                 | 
                    normalize_u = normalize(u)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    50
                 | 
                                    
                                                     | 
                
                 | 
                    return (v @ normalize_u) * normalize_u  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    51
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    52
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    53
                 | 
                                    
                                                     | 
                
                 | 
                def reject_vector(v, u):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    54
                 | 
                                    
                                                     | 
                
                 | 
                    """Rejecting the vector v onto direction u."""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    55
                 | 
                                    
                                                     | 
                
                 | 
                    return v - project_vector(v, u)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    56
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    57
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    58
                 | 
                                    
                                                     | 
                
                 | 
                def project_reject_vector(v, u):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    59
                 | 
                                    
                                                     | 
                
                 | 
                    """Projecting and rejecting the vector v onto direction u."""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    60
                 | 
                                    
                                                     | 
                
                 | 
                    projected_vector = project_vector(v, u)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    61
                 | 
                                    
                                                     | 
                
                 | 
                    rejected_vector = v - projected_vector  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    62
                 | 
                                    
                                                     | 
                
                 | 
                    return projected_vector, rejected_vector  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    63
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    64
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    65
                 | 
                                    
                                                     | 
                
                 | 
                def project_params(u, v):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    66
                 | 
                                    
                                                     | 
                
                 | 
                    """Projecting and rejecting the vector v onto direction u with scalar."""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    67
                 | 
                                    
                                                     | 
                
                 | 
                    normalize_u = normalize(u)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    68
                 | 
                                    
                                                     | 
                
                 | 
                    projection = (v @ normalize_u)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    69
                 | 
                                    
                                                     | 
                
                 | 
                    projected_vector = projection * normalize_u  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    70
                 | 
                                    
                                                     | 
                
                 | 
                    rejected_vector = v - projected_vector  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    71
                 | 
                                    
                                                     | 
                
                 | 
                    return projection, projected_vector, rejected_vector  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    72
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                                                                
            
                                    
            
            
                | 
                    73
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    74
                 | 
                                    
                                                     | 
                
                 | 
                def cosine_similarities_by_words(model, word, words):  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    75
                 | 
                                    
                                                     | 
                
                 | 
                    """Compute cosine similarities between a word and a set of other words."""  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    76
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    77
                 | 
                                    
                                                     | 
                
                 | 
                    assert isinstance(word, string_types), \  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    78
                 | 
                                    
                                                     | 
                
                 | 
                        'The arguemnt `word` should be a string.'  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    79
                 | 
                                    
                                                     | 
                
                 | 
                    assert not isinstance(words, string_types), \  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    80
                 | 
                                    
                                                     | 
                
                 | 
                        'The argument `words` should not be a string.'  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    81
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    82
                 | 
                                    
                                                     | 
                
                 | 
                    vec = model[word]  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    83
                 | 
                                    
                                                     | 
                
                 | 
                    vecs = [model[w] for w in words]  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    84
                 | 
                                    
                                                     | 
                
                 | 
                    return model.cosine_similarities(vec, vecs)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    85
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    86
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    87
                 | 
                                    
                                                     | 
                
                 | 
                def update_word_vector(model, word, new_vector):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    88
                 | 
                                    
                                                     | 
                
                 | 
                    model.vectors[model.vocab[word].index] = new_vector  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    89
                 | 
                                    
                                                     | 
                
                 | 
                    if model.vectors_norm is not None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    90
                 | 
                                    
                                                     | 
                
                 | 
                        model.vectors_norm[model.vocab[word].index] = normalize(new_vector)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    91
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    92
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    93
                 | 
                                    
                                                     | 
                
                 | 
                def generate_one_word_forms(word):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    94
                 | 
                                    
                                                     | 
                
                 | 
                    return [word.lower(), word.upper(), word.title()]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    95
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    96
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    97
                 | 
                                    
                                                     | 
                
                 | 
                def generate_words_forms(words):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    98
                 | 
                                    
                                                     | 
                
                 | 
                    return sum([generate_one_word_forms(word) for word in words], [])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    99
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    100
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    101
                 | 
                                    
                                                     | 
                
                 | 
                def take_two_sides_extreme_sorted(df, n_extreme,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    102
                 | 
                                    
                                                     | 
                
                 | 
                                                  part_column=None,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    103
                 | 
                                    
                                                     | 
                
                 | 
                                                  head_value='',  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    104
                 | 
                                    
                                                     | 
                
                 | 
                                                  tail_value=''):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    105
                 | 
                                    
                                                     | 
                
                 | 
                    head_df = df.head(n_extreme)[:]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    106
                 | 
                                    
                                                     | 
                
                 | 
                    tail_df = df.tail(n_extreme)[:]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    107
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    108
                 | 
                                    
                                                     | 
                
                 | 
                    if part_column is not None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    109
                 | 
                                    
                                                     | 
                
                 | 
                        head_df[part_column] = head_value  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    110
                 | 
                                    
                                                     | 
                
                 | 
                        tail_df[part_column] = tail_value  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    111
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    112
                 | 
                                    
                                                     | 
                
                 | 
                    return (pd.concat([head_df, tail_df])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    113
                 | 
                                    
                                                     | 
                
                 | 
                            .drop_duplicates()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    114
                 | 
                                    
                                                     | 
                
                 | 
                            .reset_index(drop=True))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    115
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    116
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    117
                 | 
                                    
                                                     | 
                
                 | 
                def assert_gensim_keyed_vectors(model):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    118
                 | 
                                    
                                                     | 
                
                 | 
                    if not isinstance(model, WORD_EMBEDDING_MODEL_TYPES):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    119
                 | 
                                    
                                                     | 
                
                 | 
                        raise TypeError('model should be of type {}, not {}' | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    120
                 | 
                                    
                                                     | 
                
                 | 
                                        .format(''.join(WORD_EMBEDDING_MODEL_TYPES), | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    121
                 | 
                                    
                                                     | 
                
                 | 
                                                type(model)))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    122
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    123
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    124
                 | 
                                    
                                                     | 
                
                 | 
                def most_similar(model, positive=None, negative=None,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    125
                 | 
                                    
                                                     | 
                
                 | 
                                 topn=10, restrict_vocab=None, indexer=None,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    126
                 | 
                                    
                                                     | 
                
                 | 
                                 unrestricted=True):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    127
                 | 
                                    
                                                     | 
                
                 | 
                    """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    128
                 | 
                                    
                                                     | 
                
                 | 
                    Find the top-N most similar words.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    129
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    130
                 | 
                                    
                                                     | 
                
                 | 
                    Positive words contribute positively towards the similarity,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    131
                 | 
                                    
                                                     | 
                
                 | 
                    negative words negatively.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    132
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    133
                 | 
                                    
                                                     | 
                
                 | 
                    This function computes cosine similarity between a simple mean  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    134
                 | 
                                    
                                                     | 
                
                 | 
                    of the projection weight vectors of the given words and  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    135
                 | 
                                    
                                                     | 
                
                 | 
                    the vectors for each word in the model.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    136
                 | 
                                    
                                                     | 
                
                 | 
                    The function corresponds to the `word-analogy` and `distance`  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    137
                 | 
                                    
                                                     | 
                
                 | 
                    scripts in the original word2vec implementation.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    138
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    139
                 | 
                                    
                                                     | 
                
                 | 
                    Based on Gensim implementation.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    140
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    141
                 | 
                                    
                                                     | 
                
                 | 
                    :param model: Word embedding model of ``gensim.model.KeyedVectors``.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    142
                 | 
                                    
                                                     | 
                
                 | 
                    :param list positive: List of words that contribute positively.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    143
                 | 
                                    
                                                     | 
                
                 | 
                    :param list negative: List of words that contribute negatively.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    144
                 | 
                                    
                                                     | 
                
                 | 
                    :param int topn: Number of top-N similar words to return.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    145
                 | 
                                    
                                                     | 
                
                 | 
                    :param int restrict_vocab: Optional integer which limits the  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    146
                 | 
                                    
                                                     | 
                
                 | 
                                               range of vectors  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    147
                 | 
                                    
                                                     | 
                
                 | 
                                               which are searched for most-similar values.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    148
                 | 
                                    
                                                     | 
                
                 | 
                                               For example, restrict_vocab=10000 would  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    149
                 | 
                                    
                                                     | 
                
                 | 
                                               only check the first 10000 word vectors  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    150
                 | 
                                    
                                                     | 
                
                 | 
                                               in the vocabulary order. (This may be  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    151
                 | 
                                    
                                                     | 
                
                 | 
                                               meaningful if you've sorted the vocabulary  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    152
                 | 
                                    
                                                     | 
                
                 | 
                                               by descending frequency.)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    153
                 | 
                                    
                                                     | 
                
                 | 
                    :param bool unrestricted: Whether to restricted the most  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    154
                 | 
                                    
                                                     | 
                
                 | 
                                              similar words to be not from  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    155
                 | 
                                    
                                                     | 
                
                 | 
                                              the positive or negative word list.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    156
                 | 
                                    
                                                     | 
                
                 | 
                    :return: Sequence of (word, similarity).  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    157
                 | 
                                    
                                                     | 
                
                 | 
                    """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    158
                 | 
                                    
                                                     | 
                
                 | 
                    if topn is not None and topn < 1:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    159
                 | 
                                    
                                                     | 
                
                 | 
                        return []  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    160
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    161
                 | 
                                    
                                                     | 
                
                 | 
                    if positive is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    162
                 | 
                                    
                                                     | 
                
                 | 
                        positive = []  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    163
                 | 
                                    
                                                     | 
                
                 | 
                    if negative is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    164
                 | 
                                    
                                                     | 
                
                 | 
                        negative = []  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    165
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    166
                 | 
                                    
                                                     | 
                
                 | 
                    model.init_sims()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    167
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    168
                 | 
                                    
                                                     | 
                
                 | 
                    if (isinstance(positive, string_types)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    169
                 | 
                                    
                                                     | 
                
                 | 
                            and not negative):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    170
                 | 
                                    
                                                     | 
                
                 | 
                        # allow calls like most_similar('dog'), | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    171
                 | 
                                    
                                                     | 
                
                 | 
                        # as a shorthand for most_similar(['dog'])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    172
                 | 
                                    
                                                     | 
                
                 | 
                        positive = [positive]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    173
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    174
                 | 
                                    
                                                     | 
                
                 | 
                    if ((isinstance(positive, string_types) and negative)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    175
                 | 
                                    
                                                     | 
                
                 | 
                            or (isinstance(negative, string_types) and positive)):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    176
                 | 
                                    
                                                     | 
                
                 | 
                        raise ValueError('If positives and negatives are given, ' | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    177
                 | 
                                    
                                                     | 
                
                 | 
                                         'both should be lists!')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    178
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    179
                 | 
                                    
                                                     | 
                
                 | 
                    # add weights for each word, if not already present;  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    180
                 | 
                                    
                                                     | 
                
                 | 
                    # default to 1.0 for positive and -1.0 for negative words  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    181
                 | 
                                    
                                                     | 
                
                 | 
                    positive = [  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    182
                 | 
                                    
                                                     | 
                
                 | 
                        (word, 1.0) if isinstance(word, string_types + (np.ndarray,))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    183
                 | 
                                    
                                                     | 
                
                 | 
                        else word  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    184
                 | 
                                    
                                                     | 
                
                 | 
                        for word in positive  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    185
                 | 
                                    
                                                     | 
                
                 | 
                    ]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    186
                 | 
                                    
                                                     | 
                
                 | 
                    negative = [  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    187
                 | 
                                    
                                                     | 
                
                 | 
                        (word, -1.0) if isinstance(word, string_types + (np.ndarray,))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    188
                 | 
                                    
                                                     | 
                
                 | 
                        else word  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    189
                 | 
                                    
                                                     | 
                
                 | 
                        for word in negative  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    190
                 | 
                                    
                                                     | 
                
                 | 
                    ]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    191
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    192
                 | 
                                    
                                                     | 
                
                 | 
                    # compute the weighted average of all words  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    193
                 | 
                                    
                                                     | 
                
                 | 
                    all_words, mean = set(), []  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    194
                 | 
                                    
                                                     | 
                
                 | 
                    for word, weight in positive + negative:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    195
                 | 
                                    
                                                     | 
                
                 | 
                        if isinstance(word, np.ndarray):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    196
                 | 
                                    
                                                     | 
                
                 | 
                            mean.append(weight * word)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    197
                 | 
                                    
                                                     | 
                
                 | 
                        else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    198
                 | 
                                    
                                                     | 
                
                 | 
                            mean.append(weight * model.word_vec(word, use_norm=True))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    199
                 | 
                                    
                                                     | 
                
                 | 
                            if word in model.vocab:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    200
                 | 
                                    
                                                     | 
                
                 | 
                                all_words.add(model.vocab[word].index)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    201
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    202
                 | 
                                    
                                                     | 
                
                 | 
                    if not mean:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    203
                 | 
                                    
                                                     | 
                
                 | 
                        raise ValueError("Cannot compute similarity with no input.") | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    204
                 | 
                                    
                                                     | 
                
                 | 
                    mean = gensim.matutils.unitvec(np.array(mean)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    205
                 | 
                                    
                                                     | 
                
                 | 
                                                   .mean(axis=0)).astype(float)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    206
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    207
                 | 
                                    
                                                     | 
                
                 | 
                    if indexer is not None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    208
                 | 
                                    
                                                     | 
                
                 | 
                        return indexer.most_similar(mean, topn)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    209
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    210
                 | 
                                    
                                                     | 
                
                 | 
                    limited = (model.vectors_norm if restrict_vocab is None  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    211
                 | 
                                    
                                                     | 
                
                 | 
                               else model.vectors_norm[:restrict_vocab])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    212
                 | 
                                    
                                                     | 
                
                 | 
                    dists = limited @ mean  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    213
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    214
                 | 
                                    
                                                     | 
                
                 | 
                    if topn is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    215
                 | 
                                    
                                                     | 
                
                 | 
                        return dists  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    216
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    217
                 | 
                                    
                                                     | 
                
                 | 
                    best = gensim.matutils.argsort(dists,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    218
                 | 
                                    
                                                     | 
                
                 | 
                                                   topn=topn + len(all_words),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    219
                 | 
                                    
                                                     | 
                
                 | 
                                                   reverse=True)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    220
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    221
                 | 
                                    
                                                     | 
                
                 | 
                    # if not unrestricted, then ignore (don't return)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    222
                 | 
                                    
                                                     | 
                
                 | 
                    # words from the input  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    223
                 | 
                                    
                                                     | 
                
                 | 
                    result = [(model.index2word[sim], float(dists[sim]))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    224
                 | 
                                    
                                                     | 
                
                 | 
                              for sim in best  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    225
                 | 
                                    
                                                     | 
                
                 | 
                              if unrestricted or sim not in all_words]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    226
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    227
                 | 
                                    
                                                     | 
                
                 | 
                    return result[:topn]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    228
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    229
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    230
                 | 
                                    
                                                     | 
                
                 | 
                def get_seed_vector(seed, bias_word_embedding):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    231
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    232
                 | 
                                    
                                                     | 
                
                 | 
                    if seed == 'direction':  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    233
                 | 
                                    
                                                     | 
                
                 | 
                        positive_end = bias_word_embedding.positive_end  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    234
                 | 
                                    
                                                     | 
                
                 | 
                        negative_end = bias_word_embedding.negative_end  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    235
                 | 
                                    
                                                     | 
                
                 | 
                        bias_word_embedding._is_direction_identified()  # pylint: disable=protected-access  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    236
                 | 
                                    
                                                     | 
                
                 | 
                        seed_vector = bias_word_embedding.direction  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    237
                 | 
                                    
                                                     | 
                
                 | 
                    else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    238
                 | 
                                    
                                                     | 
                
                 | 
                        if seed == 'ends':  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    239
                 | 
                                    
                                                     | 
                
                 | 
                            positive_end = bias_word_embedding.positive_end  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    240
                 | 
                                    
                                                     | 
                
                 | 
                            negative_end = bias_word_embedding.negative_end  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    241
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    242
                 | 
                                    
                                                     | 
                
                 | 
                        else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    243
                 | 
                                    
                                                     | 
                
                 | 
                            positive_end, negative_end = seed  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    244
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    245
                 | 
                                    
                                                     | 
                
                 | 
                        seed_vector = normalize(bias_word_embedding.model[positive_end]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    246
                 | 
                                    
                                                     | 
                
                 | 
                                                - bias_word_embedding.model[negative_end])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    247
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    248
                 | 
                                    
                                                     | 
                
                 | 
                    return seed_vector, positive_end, negative_end  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    249
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    250
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    251
                 | 
                                    
                                                     | 
                
                 | 
                def plot_clustering_as_classification(X, y_true, random_state=1, ax=None):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    252
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    253
                 | 
                                    
                                                     | 
                
                 | 
                    if ax is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    254
                 | 
                                    
                                                     | 
                
                 | 
                        _, ax = plt.subplots(figsize=(10, 5))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    255
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    256
                 | 
                                    
                                                     | 
                
                 | 
                    y_cluster = (KMeans(n_clusters=2, random_state=random_state)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    257
                 | 
                                    
                                                     | 
                
                 | 
                                 .fit_predict(X))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    258
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    259
                 | 
                                    
                                                     | 
                
                 | 
                    embedded_vectors = (TSNE(n_components=2, random_state=random_state)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    260
                 | 
                                    
                                                     | 
                
                 | 
                                        .fit_transform(X))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    261
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    262
                 | 
                                    
                                                     | 
                
                 | 
                    for y_value in np.unique(y_cluster):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    263
                 | 
                                    
                                                     | 
                
                 | 
                        mask = (y_cluster == y_value)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    264
                 | 
                                    
                                                     | 
                
                 | 
                        label = 'Positive' if y_value else 'Negative'  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    265
                 | 
                                    
                                                     | 
                
                 | 
                        ax.scatter(embedded_vectors[mask, 0],  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    266
                 | 
                                    
                                                     | 
                
                 | 
                                   embedded_vectors[mask, 1],  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    267
                 | 
                                    
                                                     | 
                
                 | 
                                   label=label)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    268
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    269
                 | 
                                    
                                                     | 
                
                 | 
                    ax.legend()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    270
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    271
                 | 
                                    
                                                     | 
                
                 | 
                    acc = accuracy_score(y_true, y_cluster)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    272
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                                                                
            
                                    
            
            
                | 
                    273
                 | 
                                    
                                                     | 
                
                 | 
                    return max(acc, 1 - acc)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    274
                 | 
                                    
                                                     | 
                
                 | 
                 |