1
|
|
|
""" |
2
|
|
|
Post-processing fairness intervension by choosing thresholds. |
3
|
|
|
|
4
|
|
|
There are multiple definitions for choosing the thresholds: |
5
|
|
|
|
6
|
|
|
1. Single threshold for all the sensitive attribute values |
7
|
|
|
that minimizes cost. |
8
|
|
|
2. A threshold for each sensitive attribute value |
9
|
|
|
that minimize cost. |
10
|
|
|
3. A threshold for each sensitive attribute value |
11
|
|
|
that achieve independence and minimize cost. |
12
|
|
|
4. A threshold for each sensitive attribute value |
13
|
|
|
that achieve equal FNR (equal opportunity) and minimize cost. |
14
|
|
|
5. A threshold for each sensitive attribute value |
15
|
|
|
that achieve seperation (equalized odds) and minimize cost. |
16
|
|
|
|
17
|
|
|
The code is based on `fairmlbook repository <https://github.com/fairmlbook/fairmlbook.github.io>`_. |
18
|
|
|
|
19
|
|
|
References: |
20
|
|
|
- Hardt, M., Price, E., & Srebro, N. (2016). |
21
|
|
|
Equality of opportunity in supervised learning. |
22
|
|
|
In Advances in neural information processing systems |
23
|
|
|
(pp. 3315-3323). |
24
|
|
|
- `Attacking discrimination with |
25
|
|
|
smarter machine learning by Google |
26
|
|
|
<https://research.google.com/bigpicture/attacking-discrimination-in-ml/>`_. |
27
|
|
|
|
28
|
|
|
""" |
29
|
|
|
|
30
|
|
|
# pylint: disable=no-name-in-module |
31
|
|
|
|
32
|
|
|
import matplotlib.pylab as plt |
33
|
|
|
import numpy as np |
34
|
|
|
import pandas as pd |
35
|
|
|
from scipy.spatial import Delaunay |
36
|
|
|
|
37
|
|
|
from ethically.fairness.metrics.visualization import plot_roc_curves |
38
|
|
|
|
39
|
|
|
|
40
|
|
|
def _ternary_search_float(f, left, right, tol): |
41
|
|
|
"""Trinary search: minimize f(x) over [left, right], to within +/-tol in x. |
42
|
|
|
|
43
|
|
|
Works assuming f is quasiconvex. |
44
|
|
|
|
45
|
|
|
""" |
46
|
|
|
while right - left > tol: |
47
|
|
|
left_third = (2 * left + right) / 3 |
48
|
|
|
right_third = (left + 2 * right) / 3 |
49
|
|
|
if f(left_third) < f(right_third): |
50
|
|
|
right = right_third |
51
|
|
|
else: |
52
|
|
|
left = left_third |
53
|
|
|
return (right + left) / 2 |
54
|
|
|
|
55
|
|
|
|
56
|
|
|
def _ternary_search_domain(f, domain): |
57
|
|
|
"""Trinary search: minimize f(x) over a domain (sequence). |
58
|
|
|
|
59
|
|
|
Works assuming f is quasiconvex and domain is ascending sorted. |
60
|
|
|
|
61
|
|
|
""" |
62
|
|
|
left = 0 |
63
|
|
|
right = len(domain) - 1 |
64
|
|
|
changed = True |
65
|
|
|
|
66
|
|
|
while changed and left != right: |
67
|
|
|
|
68
|
|
|
changed = False |
69
|
|
|
|
70
|
|
|
left_third = (2 * left + right) // 3 |
71
|
|
|
right_third = (left + 2 * right) // 3 |
72
|
|
|
|
73
|
|
|
if f(domain[left_third]) < f(domain[right_third]): |
74
|
|
|
right = right_third - 1 |
75
|
|
|
changed = True |
76
|
|
|
else: |
77
|
|
|
left = left_third + 1 |
78
|
|
|
changed = True |
79
|
|
|
|
80
|
|
|
return domain[(left + right) // 2] |
81
|
|
|
|
82
|
|
|
|
83
|
|
|
def _cost_function(fpr, tpr, base_rate, cost_matrix): |
84
|
|
|
"""Compute the cost of given (fpr, tpr). |
85
|
|
|
|
86
|
|
|
[[tn, fp], [fn, tp]] |
87
|
|
|
""" |
88
|
|
|
|
89
|
|
|
fp = fpr * (1 - base_rate) |
90
|
|
|
tn = (1 - base_rate) - fp |
91
|
|
|
tp = tpr * base_rate |
92
|
|
|
fn = base_rate - tp |
93
|
|
|
|
94
|
|
|
conf_matrix = np.array([tn, fp, fn, tp]) |
95
|
|
|
|
96
|
|
|
return (conf_matrix * np.array(cost_matrix).ravel()).sum() |
97
|
|
|
|
98
|
|
|
|
99
|
|
|
def _extract_threshold(roc_curves): |
100
|
|
|
return next(iter(roc_curves.values()))[2] |
101
|
|
|
|
102
|
|
|
|
103
|
|
|
def _first_index_above(array, value): |
104
|
|
|
"""Find the smallest index i for which array[i] > value. |
105
|
|
|
|
106
|
|
|
If no such value exists, return len(array). |
107
|
|
|
""" |
108
|
|
|
array = np.array(array) |
109
|
|
|
v = np.concatenate([array > value, np.ones_like(array[-1:])]) |
110
|
|
|
return np.argmax(v, axis=0) |
111
|
|
|
|
112
|
|
|
|
113
|
|
|
def _calc_acceptance_rate(fpr, tpr, base_rate): |
114
|
|
|
return 1 - ((fpr * (1 - base_rate) |
115
|
|
|
+ tpr * base_rate)) |
116
|
|
|
|
117
|
|
|
|
118
|
|
|
def find_single_threshold(roc_curves, base_rates, proportions, |
119
|
|
|
cost_matrix): |
120
|
|
|
"""Compute single threshold that minimizes cost. |
121
|
|
|
|
122
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
123
|
|
|
by attribute. |
124
|
|
|
:type roc_curves: dict |
125
|
|
|
:param base_rates: Base rate by attribute. |
126
|
|
|
:type base_rates: dict |
127
|
|
|
:param proportions: Proportion of each attribute value. |
128
|
|
|
:type proportions: dict |
129
|
|
|
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
130
|
|
|
:type cost_matrix: sequence |
131
|
|
|
:return: Threshold, FPR and TPR by attribute and cost value. |
132
|
|
|
:rtype: tuple |
133
|
|
|
|
134
|
|
|
""" |
135
|
|
|
|
136
|
|
|
def total_cost_function(index): |
137
|
|
|
total_cost = 0 |
138
|
|
|
|
139
|
|
|
for group, roc in roc_curves.items(): |
140
|
|
|
fpr = roc[0][index] |
141
|
|
|
tpr = roc[1][index] |
142
|
|
|
|
143
|
|
|
group_cost = _cost_function(fpr, tpr, |
144
|
|
|
base_rates[group], cost_matrix) |
145
|
|
|
group_cost *= proportions[group] |
146
|
|
|
|
147
|
|
|
total_cost += group_cost |
148
|
|
|
|
149
|
|
|
return -total_cost |
150
|
|
|
|
151
|
|
|
thresholds = _extract_threshold(roc_curves) |
152
|
|
|
|
153
|
|
|
cutoff_index = _ternary_search_domain(total_cost_function, |
154
|
|
|
range(len(thresholds))) |
155
|
|
|
|
156
|
|
|
fpr_tpr = {group: (roc[0][cutoff_index], roc[1][cutoff_index]) |
157
|
|
|
for group, roc in roc_curves.items()} |
158
|
|
|
|
159
|
|
|
cost = total_cost_function(cutoff_index) |
160
|
|
|
|
161
|
|
|
return thresholds[cutoff_index], fpr_tpr, cost |
162
|
|
|
|
163
|
|
|
|
164
|
|
|
def find_min_cost_thresholds(roc_curves, base_rates, cost_matrix): |
165
|
|
|
"""Compute thresholds by attribute values that minimize cost. |
166
|
|
|
|
167
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
168
|
|
|
by attribute. |
169
|
|
|
:type roc_curves: dict |
170
|
|
|
:param base_rates: Base rate by attribute. |
171
|
|
|
:type base_rates: dict |
172
|
|
|
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
173
|
|
|
:type cost_matrix: sequence |
174
|
|
|
:return: Thresholds, FPR and TPR by attribute and cost value. |
175
|
|
|
:rtype: tuple |
176
|
|
|
|
177
|
|
|
""" |
178
|
|
|
# pylint: disable=cell-var-from-loop |
179
|
|
|
|
180
|
|
|
cutoffs = {} |
181
|
|
|
fpr_tpr = {} |
182
|
|
|
|
183
|
|
|
cost = 0 |
184
|
|
|
thresholds = _extract_threshold(roc_curves) |
185
|
|
|
|
186
|
|
|
for group, roc in roc_curves.items(): |
187
|
|
|
def group_cost_function(index): |
188
|
|
|
fpr = roc[0][index] |
189
|
|
|
tpr = roc[1][index] |
190
|
|
|
return -_cost_function(fpr, tpr, |
191
|
|
|
base_rates[group], cost_matrix) |
192
|
|
|
|
193
|
|
|
threshold_index = _ternary_search_domain(group_cost_function, |
194
|
|
|
range(len(thresholds))) |
195
|
|
|
|
196
|
|
|
cutoffs[group] = thresholds[threshold_index] |
197
|
|
|
|
198
|
|
|
fpr_tpr[group] = (roc[0][threshold_index], |
199
|
|
|
roc[1][threshold_index]) |
200
|
|
|
|
201
|
|
|
cost += group_cost_function(threshold_index) |
202
|
|
|
|
203
|
|
|
return cutoffs, fpr_tpr, cost |
204
|
|
|
|
205
|
|
|
|
206
|
|
|
def get_acceptance_rate_indices(roc_curves, base_rates, |
207
|
|
|
acceptance_rate_value): |
208
|
|
|
indices = {} |
209
|
|
|
for group, roc in roc_curves.items(): |
210
|
|
|
# can be calculated outside the function |
211
|
|
|
acceptance_rates = _calc_acceptance_rate(fpr=roc[0], |
212
|
|
|
tpr=roc[1], |
213
|
|
|
base_rate=base_rates[group]) |
214
|
|
|
|
215
|
|
|
index = _first_index_above(acceptance_rates, |
216
|
|
|
(1 - acceptance_rate_value)) - 2 |
217
|
|
|
|
218
|
|
|
indices[group] = index |
219
|
|
|
|
220
|
|
|
return indices |
221
|
|
|
|
222
|
|
|
|
223
|
|
View Code Duplication |
def find_independence_thresholds(roc_curves, base_rates, proportions, |
224
|
|
|
cost_matrix): |
225
|
|
|
"""Compute thresholds that achieve independence and minimize cost. |
226
|
|
|
|
227
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
228
|
|
|
by attribute. |
229
|
|
|
:type roc_curves: dict |
230
|
|
|
:param base_rates: Base rate by attribute. |
231
|
|
|
:type base_rates: dict |
232
|
|
|
:param proportions: Proportion of each attribute value. |
233
|
|
|
:type proportions: dict |
234
|
|
|
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
235
|
|
|
:type cost_matrix: sequence |
236
|
|
|
:return: Thresholds, FPR and TPR by attribute and cost value. |
237
|
|
|
:rtype: tuple |
238
|
|
|
|
239
|
|
|
""" |
240
|
|
|
|
241
|
|
|
cutoffs = {} |
242
|
|
|
|
243
|
|
|
def total_cost_function(acceptance_rate_value): |
244
|
|
|
# todo: move demo here + multiple cost |
245
|
|
|
indices = get_acceptance_rate_indices(roc_curves, base_rates, |
246
|
|
|
acceptance_rate_value) |
247
|
|
|
|
248
|
|
|
total_cost = 0 |
249
|
|
|
|
250
|
|
|
for group, roc in roc_curves.items(): |
251
|
|
|
index = indices[group] |
252
|
|
|
|
253
|
|
|
fpr = roc[0][index] |
254
|
|
|
tpr = roc[1][index] |
255
|
|
|
|
256
|
|
|
group_cost = _cost_function(fpr, tpr, |
257
|
|
|
base_rates[group], |
258
|
|
|
cost_matrix) |
259
|
|
|
group_cost *= proportions[group] |
260
|
|
|
|
261
|
|
|
total_cost += group_cost |
262
|
|
|
|
263
|
|
|
return -total_cost |
264
|
|
|
|
265
|
|
|
acceptance_rate_min_cost = _ternary_search_float(total_cost_function, |
266
|
|
|
0, 1, 1e-3) |
267
|
|
|
threshold_indices = get_acceptance_rate_indices(roc_curves, base_rates, |
268
|
|
|
acceptance_rate_min_cost) |
269
|
|
|
|
270
|
|
|
thresholds = _extract_threshold(roc_curves) |
271
|
|
|
|
272
|
|
|
cutoffs = {group: thresholds[threshold_index] |
273
|
|
|
for group, threshold_index |
274
|
|
|
in threshold_indices.items()} |
275
|
|
|
|
276
|
|
|
fpr_tpr = {group: (roc[0][threshold_indices[group]], |
277
|
|
|
roc[1][threshold_indices[group]]) |
278
|
|
|
for group, roc in roc_curves.items()} |
279
|
|
|
|
280
|
|
|
return cutoffs, fpr_tpr, acceptance_rate_min_cost |
281
|
|
|
|
282
|
|
|
|
283
|
|
|
def get_fnr_indices(roc_curves, fnr_value): |
284
|
|
|
indices = {} |
285
|
|
|
for group, roc in roc_curves.items(): |
286
|
|
|
tprs = roc[1] |
287
|
|
|
index = _first_index_above(1 - tprs, |
288
|
|
|
(1 - fnr_value)) - 1 |
289
|
|
|
|
290
|
|
|
indices[group] = index |
291
|
|
|
|
292
|
|
|
return indices |
293
|
|
|
|
294
|
|
|
|
295
|
|
View Code Duplication |
def find_fnr_thresholds(roc_curves, base_rates, proportions, |
|
|
|
|
296
|
|
|
cost_matrix): |
297
|
|
|
"""Compute thresholds that achieve equal FNRs and minimize cost. |
298
|
|
|
|
299
|
|
|
Also known as **equal opportunity**. |
300
|
|
|
|
301
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
302
|
|
|
by attribute. |
303
|
|
|
:type roc_curves: dict |
304
|
|
|
:param base_rates: Base rate by attribute. |
305
|
|
|
:type base_rates: dict |
306
|
|
|
:param proportions: Proportion of each attribute value. |
307
|
|
|
:type proportions: dict |
308
|
|
|
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
309
|
|
|
:type cost_matrix: sequence |
310
|
|
|
:return: Thresholds, FPR and TPR by attribute and cost value. |
311
|
|
|
:rtype: tuple |
312
|
|
|
|
313
|
|
|
""" |
314
|
|
|
|
315
|
|
|
cutoffs = {} |
316
|
|
|
|
317
|
|
|
def total_cost_function(fnr_value): |
318
|
|
|
# todo: move demo here + multiple cost |
319
|
|
|
indices = get_fnr_indices(roc_curves, fnr_value) |
320
|
|
|
|
321
|
|
|
total_cost = 0 |
322
|
|
|
|
323
|
|
|
for group, roc in roc_curves.items(): |
324
|
|
|
index = indices[group] |
325
|
|
|
|
326
|
|
|
fpr = roc[0][index] |
327
|
|
|
tpr = roc[1][index] |
328
|
|
|
|
329
|
|
|
group_cost = _cost_function(fpr, tpr, |
330
|
|
|
base_rates[group], |
331
|
|
|
cost_matrix) |
332
|
|
|
group_cost *= proportions[group] |
333
|
|
|
|
334
|
|
|
total_cost += group_cost |
335
|
|
|
|
336
|
|
|
return -total_cost |
337
|
|
|
|
338
|
|
|
fnr_value_min_cost = _ternary_search_float(total_cost_function, |
339
|
|
|
0, 1, 1e-3) |
340
|
|
|
threshold_indices = get_fnr_indices(roc_curves, fnr_value_min_cost) |
341
|
|
|
|
342
|
|
|
cost = total_cost_function(fnr_value_min_cost) |
343
|
|
|
|
344
|
|
|
fpr_tpr = {group: (roc[0][threshold_indices[group]], |
345
|
|
|
roc[1][threshold_indices[group]]) |
346
|
|
|
for group, roc in roc_curves.items()} |
347
|
|
|
|
348
|
|
|
thresholds = _extract_threshold(roc_curves) |
349
|
|
|
cutoffs = {group: thresholds[threshold_index] |
350
|
|
|
for group, threshold_index |
351
|
|
|
in threshold_indices.items()} |
352
|
|
|
|
353
|
|
|
return cutoffs, fpr_tpr, cost, fnr_value_min_cost |
354
|
|
|
|
355
|
|
|
|
356
|
|
|
def _find_feasible_roc(roc_curves): |
357
|
|
|
polygons = [Delaunay(list(zip(fprs, tprs))) |
358
|
|
|
for group, (fprs, tprs, _) in roc_curves.items()] |
359
|
|
|
|
360
|
|
|
feasible_points = [] |
361
|
|
|
|
362
|
|
|
for poly in polygons: |
363
|
|
|
for p in poly.points: |
364
|
|
|
|
365
|
|
|
if all(poly2.find_simplex(p) != -1 for poly2 in polygons): |
366
|
|
|
feasible_points.append(p) |
367
|
|
|
|
368
|
|
|
return np.array(feasible_points) |
369
|
|
|
|
370
|
|
|
|
371
|
|
|
def find_separation_thresholds(roc_curves, base_rate, cost_matrix): |
372
|
|
|
"""Compute thresholds that achieve separation and minimize cost. |
373
|
|
|
|
374
|
|
|
Also known as **equalized odds**. |
375
|
|
|
|
376
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
377
|
|
|
by attribute. |
378
|
|
|
:type roc_curves: dict |
379
|
|
|
:param base_rate: Overall base rate. |
380
|
|
|
:type base_rate: float |
381
|
|
|
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
382
|
|
|
:type cost_matrix: sequence |
383
|
|
|
:return: Thresholds, FPR and TPR by attribute and cost value. |
384
|
|
|
:rtype: tuple |
385
|
|
|
|
386
|
|
|
""" |
387
|
|
|
|
388
|
|
|
feasible_points = _find_feasible_roc(roc_curves) |
389
|
|
|
|
390
|
|
|
cost, (best_fpr, best_tpr) = max((_cost_function(fpr, tpr, base_rate, |
391
|
|
|
cost_matrix), |
392
|
|
|
(fpr, tpr)) |
393
|
|
|
for fpr, tpr in feasible_points) |
394
|
|
|
|
395
|
|
|
return {}, {'': (best_fpr, best_tpr)}, cost |
396
|
|
|
|
397
|
|
|
|
398
|
|
|
def find_thresholds(roc_curves, proportions, base_rate, |
399
|
|
|
base_rates, cost_matrix, |
400
|
|
|
with_single=True, with_min_cost=True, |
401
|
|
|
with_independence=True, with_fnr=True, |
402
|
|
|
with_separation=True): |
403
|
|
|
"""Compute thresholds that achieve various criteria and minimize cost. |
404
|
|
|
|
405
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
406
|
|
|
by attribute. |
407
|
|
|
:type roc_curves: dict |
408
|
|
|
:param proportions: Proportion of each attribute value. |
409
|
|
|
:type proportions: dict |
410
|
|
|
:param base_rate: Overall base rate. |
411
|
|
|
:type base_rate: float |
412
|
|
|
:param base_rates: Base rate by attribute. |
413
|
|
|
:type base_rates: dict |
414
|
|
|
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
415
|
|
|
:type cost_matrix: sequence |
416
|
|
|
|
417
|
|
|
:param with_single: Compute single threshold. |
418
|
|
|
:type with_single: bool |
419
|
|
|
:param with_min_cost: Compute minimum cost thresholds. |
420
|
|
|
:type with_min_cost: bool |
421
|
|
|
:param with_independence: Compute independence thresholds. |
422
|
|
|
:type with_independence: bool |
423
|
|
|
:param with_fnr: Compute FNR thresholds. |
424
|
|
|
:type with_fnr: bool |
425
|
|
|
:param with_separation: Compute separation thresholds. |
426
|
|
|
:type with_separation: bool |
427
|
|
|
|
428
|
|
|
:return: Dictionary of threshold criteria, |
429
|
|
|
and for each criterion: |
430
|
|
|
thresholds, FPR and TPR by attribute and cost value. |
431
|
|
|
:rtype: dict |
432
|
|
|
|
433
|
|
|
""" |
434
|
|
|
|
435
|
|
|
thresholds = {} |
436
|
|
|
|
437
|
|
|
if with_single: |
438
|
|
|
thresholds['single'] = find_single_threshold(roc_curves, |
439
|
|
|
base_rates, |
440
|
|
|
proportions, |
441
|
|
|
cost_matrix) |
442
|
|
|
|
443
|
|
|
if with_min_cost: |
444
|
|
|
thresholds['min_cost'] = find_min_cost_thresholds(roc_curves, |
445
|
|
|
base_rates, |
446
|
|
|
cost_matrix) |
447
|
|
|
|
448
|
|
|
if with_independence: |
449
|
|
|
thresholds['independence'] = find_independence_thresholds(roc_curves, |
450
|
|
|
base_rates, |
451
|
|
|
proportions, |
452
|
|
|
cost_matrix) |
453
|
|
|
|
454
|
|
|
if with_fnr: |
455
|
|
|
thresholds['fnr'] = find_fnr_thresholds(roc_curves, |
456
|
|
|
base_rates, |
457
|
|
|
proportions, |
458
|
|
|
cost_matrix) |
459
|
|
|
|
460
|
|
|
if with_separation: |
461
|
|
|
thresholds['separation'] = find_separation_thresholds(roc_curves, |
462
|
|
|
base_rate, |
463
|
|
|
cost_matrix) |
464
|
|
|
|
465
|
|
|
return thresholds |
466
|
|
|
|
467
|
|
|
|
468
|
|
|
def plot_roc_curves_thresholds(roc_curves, thresholds_data, |
469
|
|
|
aucs=None, |
470
|
|
|
title='ROC Curves by Attribute', |
471
|
|
|
ax=None, figsize=None, |
472
|
|
|
title_fontsize='large', |
473
|
|
|
text_fontsize='medium'): |
474
|
|
|
"""Generate the ROC curves by attribute with thresholds. |
475
|
|
|
|
476
|
|
|
Based on :func:`skplt.metrics.plot_roc` |
477
|
|
|
|
478
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
479
|
|
|
by attribute. |
480
|
|
|
:type roc_curves: dict |
481
|
|
|
:param thresholds_data: Thresholds by attribute from the |
482
|
|
|
function |
483
|
|
|
:func:`~ethically.interventions |
484
|
|
|
.threshold.find_thresholds`. |
485
|
|
|
:type thresholds_data: dict |
486
|
|
|
:param aucs: Area Under the ROC (AUC) by attribute. |
487
|
|
|
:type aucs: dict |
488
|
|
|
:param str title: Title of the generated plot. |
489
|
|
|
:param ax: The axes upon which to plot the curve. |
490
|
|
|
If `None`, the plot is drawn on a new set of axes. |
491
|
|
|
:param tuple figsize: Tuple denoting figure size of the plot |
492
|
|
|
e.g. (6, 6). |
493
|
|
|
:param title_fontsize: Matplotlib-style fontsizes. |
494
|
|
|
Use e.g. 'small', 'medium', 'large' |
495
|
|
|
or integer-values. |
496
|
|
|
:param text_fontsize: Matplotlib-style fontsizes. |
497
|
|
|
Use e.g. 'small', 'medium', 'large' |
498
|
|
|
or integer-values. |
499
|
|
|
:return: The axes on which the plot was drawn. |
500
|
|
|
:rtype: :class:`matplotlib.axes.Axes` |
501
|
|
|
|
502
|
|
|
""" |
503
|
|
|
|
504
|
|
|
ax = plot_roc_curves(roc_curves, aucs, |
505
|
|
|
title, ax, figsize, title_fontsize, text_fontsize) |
506
|
|
|
|
507
|
|
|
MARKERS = ['o', '^', 'x', '+', 'p'] |
508
|
|
|
|
509
|
|
|
for (name, data), marker in zip(thresholds_data.items(), MARKERS): |
510
|
|
|
label = name.replace('_', ' ').title() |
511
|
|
|
ax.scatter(*zip(*data[1].values()), |
512
|
|
|
marker=marker, color='k', label=label, |
513
|
|
|
zorder=float('inf')) |
514
|
|
|
|
515
|
|
|
plt.legend() |
516
|
|
|
|
517
|
|
|
return ax |
518
|
|
|
|
519
|
|
|
|
520
|
|
|
def plot_fpt_tpr(roc_curves, |
521
|
|
|
title='FPR-TPR Curves by Attribute', |
522
|
|
|
ax=None, figsize=None, |
523
|
|
|
title_fontsize='large', text_fontsize='medium'): |
524
|
|
|
"""Generate FPR and TPR curves by thresholds and by attribute. |
525
|
|
|
|
526
|
|
|
Based on :func:`skplt.metrics.plot_roc` |
527
|
|
|
|
528
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
529
|
|
|
by attribute. |
530
|
|
|
:type roc_curves: dict |
531
|
|
|
:param str title: Title of the generated plot. |
532
|
|
|
:param ax: The axes upon which to plot the curve. |
533
|
|
|
If `None`, the plot is drawn on a new set of axes. |
534
|
|
|
:param tuple figsize: Tuple denoting figure size of the plot |
535
|
|
|
e.g. (6, 6). |
536
|
|
|
:param title_fontsize: Matplotlib-style fontsizes. |
537
|
|
|
Use e.g. 'small', 'medium', 'large' |
538
|
|
|
or integer-values. |
539
|
|
|
:param text_fontsize: Matplotlib-style fontsizes. |
540
|
|
|
Use e.g. 'small', 'medium', 'large' |
541
|
|
|
or integer-values. |
542
|
|
|
:return: The axes on which the plot was drawn. |
543
|
|
|
:rtype: :class:`matplotlib.axes.Axes` |
544
|
|
|
|
545
|
|
|
""" |
546
|
|
|
|
547
|
|
|
if ax is None: |
548
|
|
|
fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable |
549
|
|
|
|
550
|
|
|
ax.set_title(title, fontsize=title_fontsize) |
551
|
|
|
|
552
|
|
|
thresholds = _extract_threshold(roc_curves) |
553
|
|
|
|
554
|
|
|
prop_cycle = plt.rcParams['axes.prop_cycle'] |
555
|
|
|
colors = prop_cycle.by_key()['color'] |
556
|
|
|
|
557
|
|
|
for (group, roc), color in zip(roc_curves.items(), colors): |
558
|
|
|
plt.plot(thresholds, roc[0], '-', |
559
|
|
|
label='{} - FPR'.format(group), color=color) |
560
|
|
|
plt.plot(thresholds, roc[1], '--', |
561
|
|
|
label='{} - TPR'.format(group), color=color) |
562
|
|
|
plt.legend() |
563
|
|
|
|
564
|
|
|
ax.set_ylim([0.0, 1.05]) |
565
|
|
|
ax.set_xlabel('Threshold', fontsize=text_fontsize) |
566
|
|
|
ax.set_ylabel('Probability', fontsize=text_fontsize) |
567
|
|
|
ax.tick_params(labelsize=text_fontsize) |
568
|
|
|
ax.legend(fontsize=text_fontsize) |
569
|
|
|
|
570
|
|
|
return ax |
571
|
|
|
|
572
|
|
|
|
573
|
|
|
def plot_costs(thresholds_data, |
574
|
|
|
title='Cost by Threshold', |
575
|
|
|
ax=None, figsize=None, |
576
|
|
|
title_fontsize='large', text_fontsize='medium'): |
577
|
|
|
"""Plot cost by threshold definition and by attribute. |
578
|
|
|
|
579
|
|
|
Based on :func:`skplt.metrics.plot_roc` |
580
|
|
|
|
581
|
|
|
:param thresholds_data: Thresholds by attribute from the |
582
|
|
|
function |
583
|
|
|
:func:`~ethically.interventions |
584
|
|
|
.threshold.find_thresholds`. |
585
|
|
|
:type thresholds_data: dict |
586
|
|
|
:param str title: Title of the generated plot. |
587
|
|
|
:param ax: The axes upon which to plot the curve. |
588
|
|
|
If `None`, the plot is drawn on a new set of axes. |
589
|
|
|
:param tuple figsize: Tuple denoting figure size of the plot |
590
|
|
|
e.g. (6, 6). |
591
|
|
|
:param title_fontsize: Matplotlib-style fontsizes. |
592
|
|
|
Use e.g. 'small', 'medium', 'large' |
593
|
|
|
or integer-values. |
594
|
|
|
:param text_fontsize: Matplotlib-style fontsizes. |
595
|
|
|
Use e.g. 'small', 'medium', 'large' |
596
|
|
|
or integer-values. |
597
|
|
|
:return: The axes on which the plot was drawn. |
598
|
|
|
:rtype: :class:`matplotlib.axes.Axes` |
599
|
|
|
|
600
|
|
|
""" |
601
|
|
|
|
602
|
|
|
if ax is None: |
603
|
|
|
fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable |
604
|
|
|
|
605
|
|
|
ax.set_title(title, fontsize=title_fontsize) |
606
|
|
|
|
607
|
|
|
costs = {group.replace('_', ' ').title(): cost |
608
|
|
|
for group, (_, _, cost, *_) in thresholds_data.items()} |
609
|
|
|
|
610
|
|
|
(pd.Series(costs) |
611
|
|
|
.sort_values(ascending=False) |
612
|
|
|
.plot(kind='barh', ax=ax)) |
613
|
|
|
|
614
|
|
|
ax.set_xlabel('Cost', fontsize=text_fontsize) |
615
|
|
|
ax.set_ylabel('Threshold', fontsize=text_fontsize) |
616
|
|
|
ax.tick_params(labelsize=text_fontsize) |
617
|
|
|
|
618
|
|
|
return ax |
619
|
|
|
|