|
1
|
|
|
""" |
|
2
|
|
|
Evaluate words embeedings by standard benchmarks. |
|
3
|
|
|
|
|
4
|
|
|
Reference: https://github.com/kudkudak/word-embeddings-benchmarks |
|
5
|
|
|
|
|
6
|
|
|
|
|
7
|
|
|
Word Pairs Tasks |
|
8
|
|
|
|
|
9
|
|
|
1. The WordSimilarity-353 Test Collection |
|
10
|
|
|
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/ |
|
11
|
|
|
|
|
12
|
|
|
2. Rubenstein, H., and Goodenough, J. 1965. Contextual correlates of synonymy |
|
13
|
|
|
https://www.seas.upenn.edu/~hansens/conceptSim/ |
|
14
|
|
|
|
|
15
|
|
|
3. Stanford Rare Word (RW) Similarity Dataset |
|
16
|
|
|
https://nlp.stanford.edu/~lmthang/morphoNLM/ |
|
17
|
|
|
|
|
18
|
|
|
4. The Word Relatedness Mturk-771 Test Collection |
|
19
|
|
|
http://www2.mta.ac.il/~gideon/datasets/mturk_771.html |
|
20
|
|
|
|
|
21
|
|
|
5. The MEN Test Collection |
|
22
|
|
|
http://clic.cimec.unitn.it/~elia.bruni/MEN.html |
|
23
|
|
|
|
|
24
|
|
|
6. SimLex-999 |
|
25
|
|
|
https://fh295.github.io/simlex.html |
|
26
|
|
|
|
|
27
|
|
|
7. TR9856 |
|
28
|
|
|
https://www.research.ibm.com/haifa/dept/vst/files/IBM_Debater_(R)_TR9856.v2.zip |
|
29
|
|
|
|
|
30
|
|
|
|
|
31
|
|
|
Analogies Tasks |
|
32
|
|
|
|
|
33
|
|
|
1. Google Analogies (subset of WordRep) |
|
34
|
|
|
https://code.google.com/archive/p/word2vec/source |
|
35
|
|
|
|
|
36
|
|
|
2. MSR - Syntactic Analogies |
|
37
|
|
|
http://research.microsoft.com/en-us/projects/rnn/ |
|
38
|
|
|
|
|
39
|
|
|
""" |
|
40
|
|
|
|
|
41
|
|
|
import os |
|
42
|
|
|
import warnings |
|
43
|
|
|
|
|
44
|
|
|
import pandas as pd |
|
45
|
|
|
from pkg_resources import resource_filename |
|
46
|
|
|
|
|
47
|
|
|
|
|
48
|
|
|
with warnings.catch_warnings(): |
|
49
|
|
|
warnings.simplefilter('ignore', category=FutureWarning) |
|
50
|
|
|
|
|
51
|
|
|
|
|
52
|
|
|
WORD_PAIRS_TASKS = {'WS353': 'wordsim353.tsv', |
|
53
|
|
|
'RG65': 'RG_word.tsv', |
|
54
|
|
|
'RW': 'rw.tsv', |
|
55
|
|
|
'Mturk': 'MTURK-771.tsv', |
|
56
|
|
|
'MEN': 'MEN_dataset_natural_form_full.tsv', |
|
57
|
|
|
'SimLex999': 'SimLex-999.tsv', |
|
58
|
|
|
'TR9856': 'TermRelatednessResults.tsv'} |
|
59
|
|
|
|
|
60
|
|
|
ANALOGIES_TASKS = {'MSR-syntax': 'MSR-syntax.txt', |
|
61
|
|
|
'Google': 'questions-words.txt'} |
|
62
|
|
|
|
|
63
|
|
|
PAIR_WORDS_EVALUATION_FIELDS = ['pearson_r', 'pearson_pvalue', |
|
64
|
|
|
'spearman_r', 'spearman_pvalue', |
|
65
|
|
|
'ratio_unkonwn_words'] |
|
66
|
|
|
|
|
67
|
|
|
|
|
68
|
|
|
def get_data_resource_path(filename): |
|
69
|
|
|
return resource_filename(__name__, os.path.join('data', |
|
70
|
|
|
'benchmark', |
|
71
|
|
|
filename)) |
|
72
|
|
|
|
|
73
|
|
|
|
|
74
|
|
|
def prepare_word_pairs_file(src, dst, delimiter='\t'): |
|
75
|
|
|
"""Transform formats of word pairs files to tsv.""" |
|
76
|
|
|
df = pd.read_csv(src, header=None, delimiter=delimiter) |
|
77
|
|
|
df.loc[:, :2].to_csv(dst, sep=delimiter, index=False, header=False) |
|
78
|
|
|
|
|
79
|
|
|
|
|
80
|
|
|
def evaluate_word_pairs(model, kwargs_word_pairs=None): |
|
81
|
|
|
""" |
|
82
|
|
|
Evaluate word pairs tasks. |
|
83
|
|
|
|
|
84
|
|
|
:param model: Words embedding. |
|
85
|
|
|
:param kwargs_word_pairs: Kwargs for |
|
86
|
|
|
evaluate_word_pairs |
|
87
|
|
|
method. |
|
88
|
|
|
:type kwargs_word_pairs: dict or None |
|
89
|
|
|
:return: DataFrame of evaluation results. |
|
90
|
|
|
""" |
|
91
|
|
|
|
|
92
|
|
|
if kwargs_word_pairs is None: |
|
93
|
|
|
kwargs_word_pairs = {} |
|
94
|
|
|
|
|
95
|
|
|
results = {} |
|
96
|
|
|
|
|
97
|
|
|
for name, filename in WORD_PAIRS_TASKS.items(): |
|
98
|
|
|
path = get_data_resource_path(filename) |
|
99
|
|
|
(pearson, |
|
100
|
|
|
spearman, |
|
101
|
|
|
ratio_unknown_words) = model.evaluate_word_pairs(path, |
|
102
|
|
|
**kwargs_word_pairs) # pylint: disable=C0301 |
|
103
|
|
|
|
|
104
|
|
|
results[name] = {'pearson_r': pearson[0], |
|
105
|
|
|
'pearson_pvalue': pearson[1], |
|
106
|
|
|
'spearman_r': spearman.correlation, |
|
107
|
|
|
'spearman_pvalue': spearman.pvalue, |
|
108
|
|
|
'ratio_unkonwn_words': ratio_unknown_words} |
|
109
|
|
|
|
|
110
|
|
|
df = (pd.DataFrame(results) |
|
111
|
|
|
.reindex(PAIR_WORDS_EVALUATION_FIELDS) |
|
112
|
|
|
.transpose() |
|
113
|
|
|
.round(3)) |
|
114
|
|
|
|
|
115
|
|
|
return df |
|
116
|
|
|
|
|
117
|
|
|
|
|
118
|
|
|
def evaluate_word_analogies(model, kwargs_word_analogies=None): |
|
119
|
|
|
""" |
|
120
|
|
|
Evaluate word analogies tasks. |
|
121
|
|
|
|
|
122
|
|
|
:param model: Words embedding. |
|
123
|
|
|
:param kwargs_word_analogies: Kwargs for |
|
124
|
|
|
evaluate_word_analogies |
|
125
|
|
|
method. |
|
126
|
|
|
:type evaluate_word_analogies: dict or None |
|
127
|
|
|
:return: DataFrame of evaluation results. |
|
128
|
|
|
""" |
|
129
|
|
|
|
|
130
|
|
|
if kwargs_word_analogies is None: |
|
131
|
|
|
kwargs_word_analogies = {} |
|
132
|
|
|
|
|
133
|
|
|
results = {} |
|
134
|
|
|
|
|
135
|
|
|
for name, filename in ANALOGIES_TASKS.items(): |
|
136
|
|
|
path = get_data_resource_path(filename) |
|
137
|
|
|
overall_score, _ = model.evaluate_word_analogies(path, |
|
138
|
|
|
**kwargs_word_analogies) # pylint: disable=C0301 |
|
139
|
|
|
|
|
140
|
|
|
results[name] = {'score': overall_score} |
|
141
|
|
|
|
|
142
|
|
|
df = (pd.DataFrame(results) |
|
143
|
|
|
.transpose() |
|
144
|
|
|
.round(3)) |
|
145
|
|
|
|
|
146
|
|
|
return df |
|
|
|
|
|
|
147
|
|
|
|
|
148
|
|
|
|
|
149
|
|
|
def evaluate_words_embedding(model, |
|
150
|
|
|
kwargs_word_pairs=None, |
|
151
|
|
|
kwargs_word_analogies=None): |
|
152
|
|
|
""" |
|
153
|
|
|
Evaluate word pairs tasks and word analogies tasks. |
|
154
|
|
|
|
|
155
|
|
|
:param model: Words embedding. |
|
156
|
|
|
:param kwargs_word_pairs: Kwargs fo |
|
157
|
|
|
evaluate_word_pairs |
|
158
|
|
|
method. |
|
159
|
|
|
:type kwargs_word_pairs: dict or None |
|
160
|
|
|
:param kwargs_word_analogies: Kwargs for |
|
161
|
|
|
evaluate_word_analogies |
|
162
|
|
|
method. |
|
163
|
|
|
:type evaluate_word_analogies: dict or None |
|
164
|
|
|
:return: Tuple of DataFrame for the evaluation results. |
|
165
|
|
|
""" |
|
166
|
|
|
return (evaluate_word_pairs(model, kwargs_word_pairs), |
|
167
|
|
|
evaluate_word_analogies(model, kwargs_word_analogies)) |
|
168
|
|
|
|