|
1
|
|
|
""" |
|
2
|
|
|
Post-processing fairness intervension by choosing thresholds. |
|
3
|
|
|
|
|
4
|
|
|
There are multiple definitions for choosing the thresholds: |
|
5
|
|
|
|
|
6
|
|
|
1. Single threshold for all the sensitive attribute values |
|
7
|
|
|
that minimizes cost. |
|
8
|
|
|
2. A threshold for each sensitive attribute value |
|
9
|
|
|
that minimize cost. |
|
10
|
|
|
3. A threshold for each sensitive attribute value |
|
11
|
|
|
that achieve independence and minimize cost. |
|
12
|
|
|
4. A threshold for each sensitive attribute value |
|
13
|
|
|
that achieve equal FNR (equal opportunity) and minimize cost. |
|
14
|
|
|
5. A threshold for each sensitive attribute value |
|
15
|
|
|
that achieve separation (equalized odds) and minimize cost. |
|
16
|
|
|
|
|
17
|
|
|
The code is based on `fairmlbook repository <https://github.com/fairmlbook/fairmlbook.github.io>`_. |
|
18
|
|
|
|
|
19
|
|
|
References: |
|
20
|
|
|
- Hardt, M., Price, E., & Srebro, N. (2016). |
|
21
|
|
|
`Equality of opportunity in supervised learning |
|
22
|
|
|
<https://arxiv.org/abs/1610.02413>`_ |
|
23
|
|
|
In Advances in neural information processing systems |
|
24
|
|
|
(pp. 3315-3323). |
|
25
|
|
|
- `Attacking discrimination with |
|
26
|
|
|
smarter machine learning by Google |
|
27
|
|
|
<https://research.google.com/bigpicture/attacking-discrimination-in-ml/>`_. |
|
28
|
|
|
|
|
29
|
|
|
""" |
|
30
|
|
|
|
|
31
|
|
|
# pylint: disable=no-name-in-module,ungrouped-imports |
|
32
|
|
|
|
|
33
|
|
|
from collections import Counter |
|
34
|
|
|
|
|
35
|
|
|
import matplotlib.pylab as plt |
|
36
|
|
|
import numpy as np |
|
37
|
|
|
import pandas as pd |
|
38
|
|
|
import seaborn as sns |
|
39
|
|
|
from matplotlib.ticker import AutoMinorLocator |
|
40
|
|
|
from scipy.spatial import Delaunay |
|
41
|
|
|
|
|
42
|
|
|
from responsibly.fairness.metrics.score import roc_curve_by_attr |
|
43
|
|
|
from responsibly.fairness.metrics.utils import _groupby_y_x_sens |
|
44
|
|
|
from responsibly.fairness.metrics.visualization import plot_roc_curves |
|
45
|
|
|
|
|
46
|
|
|
|
|
47
|
|
|
TRINARY_SEARCH_TOL = 1e-3 |
|
48
|
|
|
|
|
49
|
|
|
|
|
50
|
|
|
def _strictly_increasing(arr): |
|
51
|
|
|
return (np.diff(arr) >= 0).all() |
|
52
|
|
|
|
|
53
|
|
|
|
|
54
|
|
|
def _titlify(text): |
|
55
|
|
|
text = text.replace('_', ' ').title() |
|
56
|
|
|
if text == 'Fnr': |
|
57
|
|
|
text = 'FNR' |
|
58
|
|
|
return text |
|
59
|
|
|
|
|
60
|
|
|
|
|
61
|
|
|
def _ternary_search_float(f, left, right, tol): |
|
62
|
|
|
"""Trinary search: minimize f(x) over [left, right], to within +/-tol in x. |
|
63
|
|
|
|
|
64
|
|
|
Works assuming f is quasiconvex. |
|
65
|
|
|
""" |
|
66
|
|
|
|
|
67
|
|
|
while right - left > tol: |
|
68
|
|
|
left_third = (2 * left + right) / 3 |
|
69
|
|
|
right_third = (left + 2 * right) / 3 |
|
70
|
|
|
if f(left_third) < f(right_third): |
|
71
|
|
|
right = right_third |
|
72
|
|
|
else: |
|
73
|
|
|
left = left_third |
|
74
|
|
|
return (right + left) / 2 |
|
75
|
|
|
|
|
76
|
|
|
|
|
77
|
|
|
def _ternary_search_domain(f, domain): |
|
78
|
|
|
"""Trinary search: minimize f(x) over a domain (sequence). |
|
79
|
|
|
|
|
80
|
|
|
Works assuming f is quasiconvex and domain is ascending sorted. |
|
81
|
|
|
|
|
82
|
|
|
BUGGY, DO NOT USE |
|
83
|
|
|
|
|
84
|
|
|
>>> arr = np.concatenate([np.arange(10, 2, -1), np.arange(2, 20)]) |
|
85
|
|
|
>>> t1 = _ternary_search_domain(lambda t: arr[t], range(len(arr))) |
|
86
|
|
|
>>> t2 = np.argmin(arr) |
|
87
|
|
|
|
|
88
|
|
|
>>> assert t1 == t2 |
|
89
|
|
|
>>> assert arr[t1] == arr[t2] |
|
90
|
|
|
""" |
|
91
|
|
|
|
|
92
|
|
|
left = 0 |
|
93
|
|
|
right = len(domain) - 1 |
|
94
|
|
|
changed = True |
|
95
|
|
|
|
|
96
|
|
|
while changed and left != right: |
|
97
|
|
|
|
|
98
|
|
|
changed = False |
|
99
|
|
|
|
|
100
|
|
|
left_third = (2 * left + right) // 3 |
|
101
|
|
|
right_third = (left + 2 * right) // 3 |
|
102
|
|
|
|
|
103
|
|
|
if f(domain[left_third]) < f(domain[right_third]): |
|
104
|
|
|
right = right_third - 1 |
|
105
|
|
|
changed = True |
|
106
|
|
|
else: |
|
107
|
|
|
left = left_third + 1 |
|
108
|
|
|
changed = True |
|
109
|
|
|
|
|
110
|
|
|
return domain[(left + right) // 2] |
|
111
|
|
|
|
|
112
|
|
|
|
|
113
|
|
|
def _cost_function(fpr, tpr, base_rate, cost_matrix): |
|
114
|
|
|
"""Compute the cost of given (fpr, tpr). |
|
115
|
|
|
|
|
116
|
|
|
[[tn, fp], [fn, tp]] |
|
117
|
|
|
""" |
|
118
|
|
|
|
|
119
|
|
|
fp = fpr * (1 - base_rate) |
|
120
|
|
|
tn = (1 - base_rate) - fp |
|
121
|
|
|
tp = tpr * base_rate |
|
122
|
|
|
fn = base_rate - tp |
|
123
|
|
|
|
|
124
|
|
|
conf_matrix = np.array([tn, fp, fn, tp]) |
|
125
|
|
|
|
|
126
|
|
|
return (conf_matrix * np.array(cost_matrix).ravel()).sum() |
|
127
|
|
|
|
|
128
|
|
|
|
|
129
|
|
|
def _extract_threshold(roc_curves): |
|
130
|
|
|
return next(iter(roc_curves.values()))[2] |
|
131
|
|
|
|
|
132
|
|
|
|
|
133
|
|
|
def _first_index_above(arr, value): |
|
134
|
|
|
"""Find the smallest index i for which array[i] > value. |
|
135
|
|
|
|
|
136
|
|
|
If no such value exists, return len(array). |
|
137
|
|
|
""" |
|
138
|
|
|
|
|
139
|
|
|
assert _strictly_increasing(arr), ( |
|
140
|
|
|
'arr should be stricktly increasing.') |
|
141
|
|
|
|
|
142
|
|
|
arr = np.array(arr) |
|
143
|
|
|
v = np.concatenate([arr > value, [1]]) |
|
144
|
|
|
return np.argmax(v, axis=0) |
|
145
|
|
|
|
|
146
|
|
|
|
|
147
|
|
|
def _calc_acceptance_rate(fpr, tpr, base_rate): |
|
148
|
|
|
return (fpr * (1 - base_rate) |
|
149
|
|
|
+ tpr * base_rate) |
|
150
|
|
|
|
|
151
|
|
|
|
|
152
|
|
|
def find_single_threshold(roc_curves, base_rates, proportions, |
|
153
|
|
|
cost_matrix): |
|
154
|
|
|
"""Compute single threshold that minimizes cost. |
|
155
|
|
|
|
|
156
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
|
157
|
|
|
by attribute. |
|
158
|
|
|
:type roc_curves: dict |
|
159
|
|
|
:param base_rates: Base rate by attribute. |
|
160
|
|
|
:type base_rates: dict |
|
161
|
|
|
:param proportions: Proportion of each attribute value. |
|
162
|
|
|
:type proportions: dict |
|
163
|
|
|
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
|
164
|
|
|
:type cost_matrix: sequence |
|
165
|
|
|
:return: Threshold, FPR and TPR by attribute and cost value. |
|
166
|
|
|
:rtype: tuple |
|
167
|
|
|
|
|
168
|
|
|
""" |
|
169
|
|
|
|
|
170
|
|
|
def total_cost_function(index): |
|
171
|
|
|
total_cost = 0 |
|
172
|
|
|
|
|
173
|
|
|
for group, roc in roc_curves.items(): |
|
174
|
|
|
fpr = roc[0][index] |
|
175
|
|
|
tpr = roc[1][index] |
|
176
|
|
|
|
|
177
|
|
|
group_cost = _cost_function(fpr, tpr, |
|
178
|
|
|
base_rates[group], cost_matrix) |
|
179
|
|
|
|
|
180
|
|
|
group_cost *= proportions[group] |
|
181
|
|
|
|
|
182
|
|
|
total_cost += group_cost |
|
183
|
|
|
|
|
184
|
|
|
return -total_cost |
|
185
|
|
|
|
|
186
|
|
|
thresholds = _extract_threshold(roc_curves) |
|
187
|
|
|
|
|
188
|
|
|
cost_per_threshold = [total_cost_function(index) |
|
189
|
|
|
for index in range(len(thresholds))] |
|
190
|
|
|
cutoff_index = np.argmin(cost_per_threshold) |
|
191
|
|
|
|
|
192
|
|
|
fpr_tpr = {group: (roc[0][cutoff_index], roc[1][cutoff_index]) |
|
193
|
|
|
for group, roc in roc_curves.items()} |
|
194
|
|
|
|
|
195
|
|
|
cost = total_cost_function(cutoff_index) |
|
196
|
|
|
|
|
197
|
|
|
return thresholds[cutoff_index], fpr_tpr, cost |
|
198
|
|
|
|
|
199
|
|
|
|
|
200
|
|
|
def find_min_cost_thresholds(roc_curves, base_rates, proportions, cost_matrix): |
|
201
|
|
|
"""Compute thresholds by attribute values that minimize cost. |
|
202
|
|
|
|
|
203
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
|
204
|
|
|
by attribute. |
|
205
|
|
|
:type roc_curves: dict |
|
206
|
|
|
:param base_rates: Base rate by attribute. |
|
207
|
|
|
:type base_rates: dict |
|
208
|
|
|
:param proportions: Proportion of each attribute value. |
|
209
|
|
|
:type proportions: dict |
|
210
|
|
|
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
|
211
|
|
|
:type cost_matrix: sequence |
|
212
|
|
|
:return: Thresholds, FPR and TPR by attribute and cost value. |
|
213
|
|
|
:rtype: tuple |
|
214
|
|
|
|
|
215
|
|
|
""" |
|
216
|
|
|
# pylint: disable=cell-var-from-loop |
|
217
|
|
|
|
|
218
|
|
|
cutoffs = {} |
|
219
|
|
|
fpr_tpr = {} |
|
220
|
|
|
|
|
221
|
|
|
cost = 0 |
|
222
|
|
|
thresholds = _extract_threshold(roc_curves) |
|
223
|
|
|
|
|
224
|
|
|
for group, roc in roc_curves.items(): |
|
225
|
|
|
def group_cost_function(index): |
|
226
|
|
|
fpr = roc[0][index] |
|
227
|
|
|
tpr = roc[1][index] |
|
228
|
|
|
return -_cost_function(fpr, tpr, |
|
229
|
|
|
base_rates[group], cost_matrix) |
|
230
|
|
|
|
|
231
|
|
|
cost_per_threshold = [group_cost_function(index) |
|
232
|
|
|
for index in range(len(thresholds))] |
|
233
|
|
|
cutoff_index = np.argmin(cost_per_threshold) |
|
234
|
|
|
|
|
235
|
|
|
cutoffs[group] = thresholds[cutoff_index] |
|
236
|
|
|
|
|
237
|
|
|
fpr_tpr[group] = (roc[0][cutoff_index], |
|
238
|
|
|
roc[1][cutoff_index]) |
|
239
|
|
|
|
|
240
|
|
|
cost += group_cost_function(cutoff_index) * proportions[group] |
|
241
|
|
|
|
|
242
|
|
|
return cutoffs, fpr_tpr, cost |
|
243
|
|
|
|
|
244
|
|
|
|
|
245
|
|
|
def get_acceptance_rate_indices(roc_curves, base_rates, |
|
246
|
|
|
acceptance_rate_value): |
|
247
|
|
|
indices = {} |
|
248
|
|
|
|
|
249
|
|
|
for group, roc in roc_curves.items(): |
|
250
|
|
|
# can be calculated outside the function |
|
251
|
|
|
acceptance_rates = _calc_acceptance_rate(fpr=roc[0], |
|
252
|
|
|
tpr=roc[1], |
|
253
|
|
|
base_rate=base_rates[group]) |
|
254
|
|
|
|
|
255
|
|
|
index = _first_index_above(acceptance_rates, |
|
256
|
|
|
acceptance_rate_value) |
|
257
|
|
|
|
|
258
|
|
|
indices[group] = index |
|
259
|
|
|
|
|
260
|
|
|
return indices |
|
261
|
|
|
|
|
262
|
|
|
|
|
263
|
|
View Code Duplication |
def find_independence_thresholds(roc_curves, base_rates, proportions, |
|
264
|
|
|
cost_matrix): |
|
265
|
|
|
"""Compute thresholds that achieve independence and minimize cost. |
|
266
|
|
|
|
|
267
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
|
268
|
|
|
by attribute. |
|
269
|
|
|
:type roc_curves: dict |
|
270
|
|
|
:param base_rates: Base rate by attribute. |
|
271
|
|
|
:type base_rates: dict |
|
272
|
|
|
:param proportions: Proportion of each attribute value. |
|
273
|
|
|
:type proportions: dict |
|
274
|
|
|
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
|
275
|
|
|
:type cost_matrix: sequence |
|
276
|
|
|
:return: Thresholds, FPR and TPR by attribute and cost value. |
|
277
|
|
|
:rtype: tuple |
|
278
|
|
|
|
|
279
|
|
|
""" |
|
280
|
|
|
|
|
281
|
|
|
cutoffs = {} |
|
282
|
|
|
|
|
283
|
|
|
def total_cost_function(acceptance_rate_value): |
|
284
|
|
|
# todo: move demo here + multiple cost |
|
285
|
|
|
# + refactor - use threshold to calculate |
|
286
|
|
|
# acceptance_rate_value |
|
287
|
|
|
indices = get_acceptance_rate_indices(roc_curves, base_rates, |
|
288
|
|
|
acceptance_rate_value) |
|
289
|
|
|
|
|
290
|
|
|
total_cost = 0 |
|
291
|
|
|
|
|
292
|
|
|
for group, roc in roc_curves.items(): |
|
293
|
|
|
index = indices[group] |
|
294
|
|
|
|
|
295
|
|
|
fpr = roc[0][index] |
|
296
|
|
|
tpr = roc[1][index] |
|
297
|
|
|
|
|
298
|
|
|
group_cost = _cost_function(fpr, tpr, |
|
299
|
|
|
base_rates[group], |
|
300
|
|
|
cost_matrix) |
|
301
|
|
|
|
|
302
|
|
|
group_cost *= proportions[group] |
|
303
|
|
|
|
|
304
|
|
|
total_cost += group_cost |
|
305
|
|
|
|
|
306
|
|
|
return -total_cost |
|
307
|
|
|
|
|
308
|
|
|
acceptance_rate_min_cost = _ternary_search_float(total_cost_function, |
|
309
|
|
|
0, 1, TRINARY_SEARCH_TOL) |
|
310
|
|
|
|
|
311
|
|
|
cost = total_cost_function(acceptance_rate_min_cost) |
|
312
|
|
|
|
|
313
|
|
|
threshold_indices = get_acceptance_rate_indices(roc_curves, base_rates, |
|
314
|
|
|
acceptance_rate_min_cost) |
|
315
|
|
|
thresholds = _extract_threshold(roc_curves) |
|
316
|
|
|
|
|
317
|
|
|
cutoffs = {group: thresholds[threshold_index] |
|
318
|
|
|
for group, threshold_index |
|
319
|
|
|
in threshold_indices.items()} |
|
320
|
|
|
|
|
321
|
|
|
fpr_tpr = {group: (roc[0][threshold_indices[group]], |
|
322
|
|
|
roc[1][threshold_indices[group]]) |
|
323
|
|
|
for group, roc in roc_curves.items()} |
|
324
|
|
|
|
|
325
|
|
|
return cutoffs, fpr_tpr, cost, acceptance_rate_min_cost |
|
326
|
|
|
|
|
327
|
|
|
|
|
328
|
|
|
def get_fnr_indices(roc_curves, fnr_value): |
|
329
|
|
|
indices = {} |
|
330
|
|
|
|
|
331
|
|
|
tpr_value = 1 - fnr_value |
|
332
|
|
|
|
|
333
|
|
|
for group, roc in roc_curves.items(): |
|
334
|
|
|
tprs = roc[1] |
|
335
|
|
|
index = _first_index_above(tprs, |
|
336
|
|
|
tpr_value) - 1 |
|
337
|
|
|
index = max(0, index) |
|
338
|
|
|
indices[group] = index |
|
339
|
|
|
|
|
340
|
|
|
return indices |
|
341
|
|
|
|
|
342
|
|
|
|
|
343
|
|
View Code Duplication |
def find_fnr_thresholds(roc_curves, base_rates, proportions, |
|
|
|
|
|
|
344
|
|
|
cost_matrix): |
|
345
|
|
|
"""Compute thresholds that achieve equal FNRs and minimize cost. |
|
346
|
|
|
|
|
347
|
|
|
Also known as **equal opportunity**. |
|
348
|
|
|
|
|
349
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
|
350
|
|
|
by attribute. |
|
351
|
|
|
:type roc_curves: dict |
|
352
|
|
|
:param base_rates: Base rate by attribute. |
|
353
|
|
|
:type base_rates: dict |
|
354
|
|
|
:param proportions: Proportion of each attribute value. |
|
355
|
|
|
:type proportions: dict |
|
356
|
|
|
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
|
357
|
|
|
:type cost_matrix: sequence |
|
358
|
|
|
:return: Thresholds, FPR and TPR by attribute and cost value. |
|
359
|
|
|
:rtype: tuple |
|
360
|
|
|
|
|
361
|
|
|
""" |
|
362
|
|
|
|
|
363
|
|
|
cutoffs = {} |
|
364
|
|
|
|
|
365
|
|
|
def total_cost_function(fnr_value): |
|
366
|
|
|
# todo: move demo here + multiple cost |
|
367
|
|
|
indices = get_fnr_indices(roc_curves, fnr_value) |
|
368
|
|
|
|
|
369
|
|
|
total_cost = 0 |
|
370
|
|
|
|
|
371
|
|
|
for group, roc in roc_curves.items(): |
|
372
|
|
|
index = indices[group] |
|
373
|
|
|
|
|
374
|
|
|
fpr = roc[0][index] |
|
375
|
|
|
tpr = roc[1][index] |
|
376
|
|
|
|
|
377
|
|
|
group_cost = _cost_function(fpr, tpr, |
|
378
|
|
|
base_rates[group], |
|
379
|
|
|
cost_matrix) |
|
380
|
|
|
group_cost *= proportions[group] |
|
381
|
|
|
|
|
382
|
|
|
total_cost += group_cost |
|
383
|
|
|
|
|
384
|
|
|
return -total_cost |
|
385
|
|
|
|
|
386
|
|
|
fnr_value_min_cost = _ternary_search_float(total_cost_function, |
|
387
|
|
|
0, 1, |
|
388
|
|
|
TRINARY_SEARCH_TOL) |
|
389
|
|
|
|
|
390
|
|
|
threshold_indices = get_fnr_indices(roc_curves, fnr_value_min_cost) |
|
391
|
|
|
|
|
392
|
|
|
cost = total_cost_function(fnr_value_min_cost) |
|
393
|
|
|
|
|
394
|
|
|
fpr_tpr = {group: (roc[0][threshold_indices[group]], |
|
395
|
|
|
roc[1][threshold_indices[group]]) |
|
396
|
|
|
for group, roc in roc_curves.items()} |
|
397
|
|
|
|
|
398
|
|
|
thresholds = _extract_threshold(roc_curves) |
|
399
|
|
|
cutoffs = {group: thresholds[threshold_index] |
|
400
|
|
|
for group, threshold_index |
|
401
|
|
|
in threshold_indices.items()} |
|
402
|
|
|
|
|
403
|
|
|
return cutoffs, fpr_tpr, cost, fnr_value_min_cost |
|
404
|
|
|
|
|
405
|
|
|
|
|
406
|
|
|
def _find_feasible_roc(roc_curves): |
|
407
|
|
|
polygons = [Delaunay(list(zip(fprs, tprs))) |
|
408
|
|
|
for group, (fprs, tprs, _) in roc_curves.items()] |
|
409
|
|
|
|
|
410
|
|
|
feasible_points = [] |
|
411
|
|
|
|
|
412
|
|
|
for poly in polygons: |
|
413
|
|
|
for p in poly.points: |
|
414
|
|
|
|
|
415
|
|
|
if all(poly2.find_simplex(p) != -1 for poly2 in polygons): |
|
416
|
|
|
feasible_points.append(p) |
|
417
|
|
|
|
|
418
|
|
|
return np.array(feasible_points) |
|
419
|
|
|
|
|
420
|
|
|
|
|
421
|
|
|
def find_separation_thresholds(roc_curves, base_rate, cost_matrix): |
|
422
|
|
|
"""Compute thresholds that achieve separation and minimize cost. |
|
423
|
|
|
|
|
424
|
|
|
Also known as **equalized odds**. |
|
425
|
|
|
|
|
426
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
|
427
|
|
|
by attribute. |
|
428
|
|
|
:type roc_curves: dict |
|
429
|
|
|
:param base_rate: Overall base rate. |
|
430
|
|
|
:type base_rate: float |
|
431
|
|
|
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
|
432
|
|
|
:type cost_matrix: sequence |
|
433
|
|
|
:return: Thresholds, FPR and TPR by attribute and cost value. |
|
434
|
|
|
:rtype: tuple |
|
435
|
|
|
|
|
436
|
|
|
""" |
|
437
|
|
|
|
|
438
|
|
|
feasible_points = _find_feasible_roc(roc_curves) |
|
439
|
|
|
|
|
440
|
|
|
cost, (best_fpr, best_tpr) = max((_cost_function(fpr, tpr, base_rate, |
|
441
|
|
|
cost_matrix), |
|
442
|
|
|
(fpr, tpr)) |
|
443
|
|
|
for fpr, tpr in feasible_points) |
|
444
|
|
|
cost = - cost |
|
445
|
|
|
|
|
446
|
|
|
return {}, {'': (best_fpr, best_tpr)}, cost |
|
447
|
|
|
|
|
448
|
|
|
|
|
449
|
|
|
def find_thresholds(roc_curves, proportions, base_rate, |
|
450
|
|
|
base_rates, cost_matrix, |
|
451
|
|
|
with_single=True, with_min_cost=True, |
|
452
|
|
|
with_independence=True, with_fnr=True, |
|
453
|
|
|
with_separation=True): |
|
454
|
|
|
"""Compute thresholds that achieve various criteria and minimize cost. |
|
455
|
|
|
|
|
456
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
|
457
|
|
|
by attribute. |
|
458
|
|
|
:type roc_curves: dict |
|
459
|
|
|
:param proportions: Proportion of each attribute value. |
|
460
|
|
|
:type proportions: dict |
|
461
|
|
|
:param base_rate: Overall base rate. |
|
462
|
|
|
:type base_rate: float |
|
463
|
|
|
:param base_rates: Base rate by attribute. |
|
464
|
|
|
:type base_rates: dict |
|
465
|
|
|
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
|
466
|
|
|
:type cost_matrix: sequence |
|
467
|
|
|
|
|
468
|
|
|
:param with_single: Compute single threshold. |
|
469
|
|
|
:type with_single: bool |
|
470
|
|
|
:param with_min_cost: Compute minimum cost thresholds. |
|
471
|
|
|
:type with_min_cost: bool |
|
472
|
|
|
:param with_independence: Compute independence thresholds. |
|
473
|
|
|
:type with_independence: bool |
|
474
|
|
|
:param with_fnr: Compute FNR thresholds. |
|
475
|
|
|
:type with_fnr: bool |
|
476
|
|
|
:param with_separation: Compute separation thresholds. |
|
477
|
|
|
:type with_separation: bool |
|
478
|
|
|
|
|
479
|
|
|
:return: Dictionary of threshold criteria, |
|
480
|
|
|
and for each criterion: |
|
481
|
|
|
thresholds, FPR and TPR by attribute and cost value. |
|
482
|
|
|
:rtype: dict |
|
483
|
|
|
|
|
484
|
|
|
""" |
|
485
|
|
|
|
|
486
|
|
|
thresholds = {} |
|
487
|
|
|
|
|
488
|
|
|
if with_single: |
|
489
|
|
|
thresholds['single'] = find_single_threshold(roc_curves, |
|
490
|
|
|
base_rates, |
|
491
|
|
|
proportions, |
|
492
|
|
|
cost_matrix) |
|
493
|
|
|
|
|
494
|
|
|
if with_min_cost: |
|
495
|
|
|
thresholds['min_cost'] = find_min_cost_thresholds(roc_curves, |
|
496
|
|
|
base_rates, |
|
497
|
|
|
proportions, |
|
498
|
|
|
cost_matrix) |
|
499
|
|
|
|
|
500
|
|
|
if with_independence: |
|
501
|
|
|
thresholds['independence'] = find_independence_thresholds(roc_curves, |
|
502
|
|
|
base_rates, |
|
503
|
|
|
proportions, |
|
504
|
|
|
cost_matrix) |
|
505
|
|
|
|
|
506
|
|
|
if with_fnr: |
|
507
|
|
|
thresholds['fnr'] = find_fnr_thresholds(roc_curves, |
|
508
|
|
|
base_rates, |
|
509
|
|
|
proportions, |
|
510
|
|
|
cost_matrix) |
|
511
|
|
|
|
|
512
|
|
|
if with_separation: |
|
513
|
|
|
thresholds['separation'] = find_separation_thresholds(roc_curves, |
|
514
|
|
|
base_rate, |
|
515
|
|
|
cost_matrix) |
|
516
|
|
|
|
|
517
|
|
|
return thresholds |
|
518
|
|
|
|
|
519
|
|
|
|
|
520
|
|
|
def find_thresholds_by_attr(y_true, y_score, x_sens, |
|
521
|
|
|
cost_matrix, |
|
522
|
|
|
with_single=True, with_min_cost=True, |
|
523
|
|
|
with_independence=True, with_fnr=True, |
|
524
|
|
|
with_separation=True, |
|
525
|
|
|
pos_label=None, sample_weight=None, |
|
526
|
|
|
drop_intermediate=False): |
|
527
|
|
|
""" |
|
528
|
|
|
Compute thresholds that achieve various criteria and minimize cost. |
|
529
|
|
|
|
|
530
|
|
|
:param y_true: Binary ground truth (correct) target values. |
|
531
|
|
|
:param y_score: Estimated target score as returned by a classifier. |
|
532
|
|
|
:param x_sens: Sensitive attribute values corresponded to each |
|
533
|
|
|
estimated target. |
|
534
|
|
|
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
|
535
|
|
|
:type cost_matrix: sequence |
|
536
|
|
|
|
|
537
|
|
|
:param pos_label: Label considered as positive and others |
|
538
|
|
|
are considered negative. |
|
539
|
|
|
:param sample_weight: Sample weights. |
|
540
|
|
|
:param drop_intermediate: Whether to drop some suboptimal |
|
541
|
|
|
thresholds which would not appear on |
|
542
|
|
|
a plotted ROC curve. |
|
543
|
|
|
This is useful in order to create |
|
544
|
|
|
lighter ROC curves. |
|
545
|
|
|
|
|
546
|
|
|
:param with_single: Compute single threshold. |
|
547
|
|
|
:type with_single: bool |
|
548
|
|
|
:param with_min_cost: Compute minimum cost thresholds. |
|
549
|
|
|
:type with_min_cost: bool |
|
550
|
|
|
:param with_independence: Compute independence thresholds. |
|
551
|
|
|
:type with_independence: bool |
|
552
|
|
|
:param with_fnr: Compute FNR thresholds. |
|
553
|
|
|
:type with_fnr: bool |
|
554
|
|
|
:param with_separation: Compute separation thresholds. |
|
555
|
|
|
:type with_separation: bool |
|
556
|
|
|
|
|
557
|
|
|
:return: Dictionary of threshold criteria, |
|
558
|
|
|
and for each criterion: |
|
559
|
|
|
thresholds, FPR and TPR by attribute and cost value. |
|
560
|
|
|
:rtype: dict |
|
561
|
|
|
""" |
|
562
|
|
|
# pylint: disable=too-many-locals |
|
563
|
|
|
|
|
564
|
|
|
roc_curves = roc_curve_by_attr(y_true, y_score, x_sens, |
|
565
|
|
|
pos_label, sample_weight, |
|
566
|
|
|
drop_intermediate) |
|
567
|
|
|
|
|
568
|
|
|
proportions = {value: count / len(x_sens) |
|
569
|
|
|
for value, count in Counter(x_sens).items()} |
|
570
|
|
|
|
|
571
|
|
|
if pos_label is None: |
|
572
|
|
|
pos_label = 1 |
|
573
|
|
|
|
|
574
|
|
|
base_rate = np.mean(y_true == pos_label) |
|
575
|
|
|
grouped = _groupby_y_x_sens(y_true, y_score, x_sens) |
|
576
|
|
|
|
|
577
|
|
|
base_rates = {x_sens_value: np.mean(group['y_true'] == pos_label) |
|
578
|
|
|
for x_sens_value, group in grouped} |
|
579
|
|
|
|
|
580
|
|
|
thresholds_data = find_thresholds(roc_curves, |
|
581
|
|
|
proportions, |
|
582
|
|
|
base_rate, |
|
583
|
|
|
base_rates, |
|
584
|
|
|
cost_matrix, |
|
585
|
|
|
with_single, with_min_cost, |
|
586
|
|
|
with_independence, with_fnr, |
|
587
|
|
|
with_separation) |
|
588
|
|
|
|
|
589
|
|
|
return thresholds_data |
|
590
|
|
|
|
|
591
|
|
|
|
|
592
|
|
|
def plot_roc_curves_thresholds(roc_curves, thresholds_data, |
|
593
|
|
|
aucs=None, |
|
594
|
|
|
title='ROC Curves by Attribute', |
|
595
|
|
|
ax=None, figsize=None, |
|
596
|
|
|
title_fontsize='large', |
|
597
|
|
|
text_fontsize='medium'): |
|
598
|
|
|
"""Generate the ROC curves by attribute with thresholds. |
|
599
|
|
|
|
|
600
|
|
|
Based on :func:`skplt.metrics.plot_roc` |
|
601
|
|
|
|
|
602
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
|
603
|
|
|
by attribute. |
|
604
|
|
|
:type roc_curves: dict |
|
605
|
|
|
:param thresholds_data: Thresholds by attribute from the |
|
606
|
|
|
function |
|
607
|
|
|
:func:`~responsibly.interventions |
|
608
|
|
|
.threshold.find_thresholds`. |
|
609
|
|
|
:type thresholds_data: dict |
|
610
|
|
|
:param aucs: Area Under the ROC (AUC) by attribute. |
|
611
|
|
|
:type aucs: dict |
|
612
|
|
|
:param str title: Title of the generated plot. |
|
613
|
|
|
:param ax: The axes upon which to plot the curve. |
|
614
|
|
|
If `None`, the plot is drawn on a new set of axes. |
|
615
|
|
|
:param tuple figsize: Tuple denoting figure size of the plot |
|
616
|
|
|
e.g. (6, 6). |
|
617
|
|
|
:param title_fontsize: Matplotlib-style fontsizes. |
|
618
|
|
|
Use e.g. 'small', 'medium', 'large' |
|
619
|
|
|
or integer-values. |
|
620
|
|
|
:param text_fontsize: Matplotlib-style fontsizes. |
|
621
|
|
|
Use e.g. 'small', 'medium', 'large' |
|
622
|
|
|
or integer-values. |
|
623
|
|
|
:return: The axes on which the plot was drawn. |
|
624
|
|
|
:rtype: :class:`matplotlib.axes.Axes` |
|
625
|
|
|
|
|
626
|
|
|
""" |
|
627
|
|
|
|
|
628
|
|
|
ax = plot_roc_curves(roc_curves, aucs, |
|
629
|
|
|
title, ax, figsize, title_fontsize, text_fontsize) |
|
630
|
|
|
|
|
631
|
|
|
MARKERS = ['o', '^', 'x', '+', 'p'] |
|
632
|
|
|
|
|
633
|
|
|
for (name, data), marker in zip(thresholds_data.items(), MARKERS): |
|
634
|
|
|
label = _titlify(name) |
|
635
|
|
|
ax.scatter(*zip(*data[1].values()), |
|
636
|
|
|
marker=marker, color='k', label=label, |
|
637
|
|
|
zorder=float('inf')) |
|
638
|
|
|
|
|
639
|
|
|
plt.legend() |
|
640
|
|
|
|
|
641
|
|
|
return ax |
|
642
|
|
|
|
|
643
|
|
|
|
|
644
|
|
|
def plot_fpt_tpr(roc_curves, |
|
645
|
|
|
title='FPR-TPR Curves by Attribute', |
|
646
|
|
|
ax=None, figsize=None, |
|
647
|
|
|
title_fontsize='large', text_fontsize='medium'): |
|
648
|
|
|
"""Generate FPR and TPR curves by thresholds and by attribute. |
|
649
|
|
|
|
|
650
|
|
|
Based on :func:`skplt.metrics.plot_roc` |
|
651
|
|
|
|
|
652
|
|
|
:param roc_curves: Receiver operating characteristic (ROC) |
|
653
|
|
|
by attribute. |
|
654
|
|
|
:type roc_curves: dict |
|
655
|
|
|
:param str title: Title of the generated plot. |
|
656
|
|
|
:param ax: The axes upon which to plot the curve. |
|
657
|
|
|
If `None`, the plot is drawn on a new set of axes. |
|
658
|
|
|
:param tuple figsize: Tuple denoting figure size of the plot |
|
659
|
|
|
e.g. (6, 6). |
|
660
|
|
|
:param title_fontsize: Matplotlib-style fontsizes. |
|
661
|
|
|
Use e.g. 'small', 'medium', 'large' |
|
662
|
|
|
or integer-values. |
|
663
|
|
|
:param text_fontsize: Matplotlib-style fontsizes. |
|
664
|
|
|
Use e.g. 'small', 'medium', 'large' |
|
665
|
|
|
or integer-values. |
|
666
|
|
|
:return: The axes on which the plot was drawn. |
|
667
|
|
|
:rtype: :class:`matplotlib.axes.Axes` |
|
668
|
|
|
|
|
669
|
|
|
""" |
|
670
|
|
|
|
|
671
|
|
|
if ax is None: |
|
672
|
|
|
fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable |
|
673
|
|
|
|
|
674
|
|
|
ax.set_title(title, fontsize=title_fontsize) |
|
675
|
|
|
|
|
676
|
|
|
thresholds = _extract_threshold(roc_curves) |
|
677
|
|
|
|
|
678
|
|
|
prop_cycle = plt.rcParams['axes.prop_cycle'] |
|
679
|
|
|
colors = prop_cycle.by_key()['color'] |
|
680
|
|
|
|
|
681
|
|
|
for (group, roc), color in zip(roc_curves.items(), colors): |
|
682
|
|
|
plt.plot(thresholds, roc[0], '-', |
|
683
|
|
|
label='{} - FPR'.format(group), color=color) |
|
684
|
|
|
plt.plot(thresholds, roc[1], '--', |
|
685
|
|
|
label='{} - TPR'.format(group), color=color) |
|
686
|
|
|
plt.legend() |
|
687
|
|
|
|
|
688
|
|
|
ax.set_ylim([0.0, 1.05]) |
|
689
|
|
|
ax.set_xlabel('Threshold', fontsize=text_fontsize) |
|
690
|
|
|
ax.set_ylabel('Probability', fontsize=text_fontsize) |
|
691
|
|
|
ax.tick_params(labelsize=text_fontsize) |
|
692
|
|
|
ax.legend(fontsize=text_fontsize) |
|
693
|
|
|
|
|
694
|
|
|
return ax |
|
695
|
|
|
|
|
696
|
|
|
|
|
697
|
|
|
def plot_costs(thresholds_data, |
|
698
|
|
|
title='Cost by Threshold Strategy', |
|
699
|
|
|
ax=None, figsize=None, |
|
700
|
|
|
title_fontsize='large', text_fontsize='medium'): |
|
701
|
|
|
"""Plot cost by threshold definition and by attribute. |
|
702
|
|
|
|
|
703
|
|
|
Based on :func:`skplt.metrics.plot_roc` |
|
704
|
|
|
|
|
705
|
|
|
:param thresholds_data: Thresholds by attribute from the |
|
706
|
|
|
function |
|
707
|
|
|
:func:`~responsibly.interventions |
|
708
|
|
|
.threshold.find_thresholds`. |
|
709
|
|
|
:type thresholds_data: dict |
|
710
|
|
|
:param str title: Title of the generated plot. |
|
711
|
|
|
:param ax: The axes upon which to plot the curve. |
|
712
|
|
|
If `None`, the plot is drawn on a new set of axes. |
|
713
|
|
|
:param tuple figsize: Tuple denoting figure size of the plot |
|
714
|
|
|
e.g. (6, 6). |
|
715
|
|
|
:param title_fontsize: Matplotlib-style fontsizes. |
|
716
|
|
|
Use e.g. 'small', 'medium', 'large' |
|
717
|
|
|
or integer-values. |
|
718
|
|
|
:param text_fontsize: Matplotlib-style fontsizes. |
|
719
|
|
|
Use e.g. 'small', 'medium', 'large' |
|
720
|
|
|
or integer-values. |
|
721
|
|
|
:return: The axes on which the plot was drawn. |
|
722
|
|
|
:rtype: :class:`matplotlib.axes.Axes` |
|
723
|
|
|
""" |
|
724
|
|
|
|
|
725
|
|
|
if ax is None: |
|
726
|
|
|
fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable |
|
727
|
|
|
|
|
728
|
|
|
ax.set_title(title, fontsize=title_fontsize) |
|
729
|
|
|
|
|
730
|
|
|
costs = {_titlify(group): cost |
|
731
|
|
|
for group, (_, _, cost, *_) in thresholds_data.items()} |
|
732
|
|
|
|
|
733
|
|
|
(pd.Series(costs) |
|
734
|
|
|
.sort_values(ascending=False) |
|
735
|
|
|
.plot(kind='barh', ax=ax)) |
|
736
|
|
|
|
|
737
|
|
|
ax.set_xlabel('Cost', fontsize=text_fontsize) |
|
738
|
|
|
ax.set_ylabel('Threshold', fontsize=text_fontsize) |
|
739
|
|
|
ax.tick_params(labelsize=text_fontsize) |
|
740
|
|
|
|
|
741
|
|
|
return ax |
|
742
|
|
|
|
|
743
|
|
|
|
|
744
|
|
|
def plot_thresholds(thresholds_data, |
|
745
|
|
|
markersize=7, |
|
746
|
|
|
title='Thresholds by Strategy and Attribute', |
|
747
|
|
|
xlim=None, |
|
748
|
|
|
ax=None, figsize=None, |
|
749
|
|
|
title_fontsize='large', text_fontsize='medium'): |
|
750
|
|
|
"""Plot thresholds by strategy and by attribute. |
|
751
|
|
|
|
|
752
|
|
|
Based on :func:`skplt.metrics.plot_roc` |
|
753
|
|
|
|
|
754
|
|
|
:param thresholds_data: Thresholds by attribute from the |
|
755
|
|
|
function |
|
756
|
|
|
:func:`~responsibly.interventions |
|
757
|
|
|
.threshold.find_thresholds`. |
|
758
|
|
|
:type thresholds_data: dict |
|
759
|
|
|
:param int markersize: Marker size. |
|
760
|
|
|
:param str title: Title of the generated plot. |
|
761
|
|
|
:param tuple xlim: Set the data limits for the x-axis. |
|
762
|
|
|
:param ax: The axes upon which to plot the curve. |
|
763
|
|
|
If `None`, the plot is drawn on a new set of axes. |
|
764
|
|
|
:param tuple figsize: Tuple denoting figure size of the plot |
|
765
|
|
|
e.g. (6, 6). |
|
766
|
|
|
:param title_fontsize: Matplotlib-style fontsizes. |
|
767
|
|
|
Use e.g. 'small', 'medium', 'large' |
|
768
|
|
|
or integer-values. |
|
769
|
|
|
:param text_fontsize: Matplotlib-style fontsizes. |
|
770
|
|
|
Use e.g. 'small', 'medium', 'large' |
|
771
|
|
|
or integer-values. |
|
772
|
|
|
:return: The axes on which the plot was drawn. |
|
773
|
|
|
:rtype: :class:`matplotlib.axes.Axes` |
|
774
|
|
|
""" |
|
775
|
|
|
|
|
776
|
|
|
if ax is None: |
|
777
|
|
|
fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable |
|
778
|
|
|
|
|
779
|
|
|
ax.set_title(title, fontsize=title_fontsize) |
|
780
|
|
|
|
|
781
|
|
|
# TODO: refactor! |
|
782
|
|
|
df = pd.DataFrame({_titlify(key): thresholds |
|
783
|
|
|
for key, (thresholds, *_) in thresholds_data.items() |
|
784
|
|
|
if key != 'separation'}) |
|
785
|
|
|
melted_df = pd.melt(df, var_name='Strategy', value_name='Threshold') |
|
786
|
|
|
melted_df['Attribute'] = list(df.index) * len(df.columns) |
|
787
|
|
|
|
|
788
|
|
|
sns.stripplot(y='Strategy', x='Threshold', hue='Attribute', data=melted_df, |
|
789
|
|
|
jitter=False, dodge=True, size=markersize, ax=ax) |
|
790
|
|
|
|
|
791
|
|
|
minor_locator = AutoMinorLocator(2) |
|
792
|
|
|
fig.gca().yaxis.set_minor_locator(minor_locator) |
|
|
|
|
|
|
793
|
|
|
ax.grid(which='minor') |
|
794
|
|
|
|
|
795
|
|
|
if xlim is not None: |
|
796
|
|
|
ax.set_xlim(*xlim) |
|
797
|
|
|
|
|
798
|
|
|
ax.set_xlabel('Threshold', fontsize=text_fontsize) |
|
799
|
|
|
ax.set_ylabel('Strategy', fontsize=text_fontsize) |
|
800
|
|
|
ax.tick_params(labelsize=text_fontsize) |
|
801
|
|
|
|
|
802
|
|
|
return ax |
|
803
|
|
|
|