1
|
|
|
import math |
2
|
|
|
|
3
|
|
|
import numpy as np |
4
|
|
|
import pandas as pd |
5
|
|
|
|
6
|
|
|
|
7
|
|
|
def round_to_extreme(value, digits=2): |
8
|
|
|
place = 10**digits |
9
|
|
|
new_value = math.ceil(abs(value) * place) / place |
10
|
|
|
if value < 0: |
11
|
|
|
new_value = -new_value |
12
|
|
|
return new_value |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
def normalize(v): |
16
|
|
|
"""Normalize a 1-D vector.""" |
17
|
|
|
if v.ndim != 1: |
18
|
|
|
raise ValueError('v should be 1-D, {}-D was given'.format( |
19
|
|
|
v.ndim)) |
20
|
|
|
norm = np.linalg.norm(v) |
21
|
|
|
if norm == 0: |
22
|
|
|
return v |
23
|
|
|
return v / norm |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
def cosine_similarity(v, u): |
27
|
|
|
"""Calculate the cosine similarity between two vectors.""" |
28
|
|
|
v_norm = np.linalg.norm(v) |
29
|
|
|
u_norm = np.linalg.norm(u) |
30
|
|
|
similarity = v @ u / (v_norm * u_norm) |
31
|
|
|
return similarity |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
def project_vector(v, u): |
35
|
|
|
"""Projecting the vector v onto direction u.""" |
36
|
|
|
normalize_u = normalize(u) |
37
|
|
|
return (v @ normalize_u) * normalize_u |
38
|
|
|
|
39
|
|
|
|
40
|
|
|
def reject_vector(v, u): |
41
|
|
|
"""Rejecting the vector v onto direction u.""" |
42
|
|
|
return v - project_vector(v, u) |
43
|
|
|
|
44
|
|
|
|
45
|
|
|
def project_reject_vector(v, u): |
46
|
|
|
"""Projecting and rejecting the vector v onto direction u.""" |
47
|
|
|
projected_vector = project_vector(v, u) |
48
|
|
|
rejected_vector = v - project_vector(v, u) |
49
|
|
|
return projected_vector, rejected_vector |
50
|
|
|
|
51
|
|
|
|
52
|
|
|
def update_word_vector(model, word, new_vector): |
53
|
|
|
model.syn0[model.vocab[word].index] = new_vector |
54
|
|
|
if model.syn0norm is not None: |
55
|
|
|
model.syn0norm[model.vocab[word].index] = normalize(new_vector) |
56
|
|
|
|
57
|
|
|
|
58
|
|
|
def generate_one_word_forms(word): |
59
|
|
|
return [word.lower(), word.upper(), word.title()] |
60
|
|
|
|
61
|
|
|
|
62
|
|
|
def generate_words_forms(words): |
63
|
|
|
return sum([generate_one_word_forms(word) for word in words], []) |
64
|
|
|
|
65
|
|
|
|
66
|
|
|
def take_two_sides_extreme_sorted(df, n_extreme, |
67
|
|
|
part_column=None, |
68
|
|
|
head_value='', |
69
|
|
|
tail_value=''): |
70
|
|
|
head_df = df.head(n_extreme)[:] |
71
|
|
|
tail_df = df.tail(n_extreme)[:] |
72
|
|
|
|
73
|
|
|
if part_column is not None: |
74
|
|
|
head_df[part_column] = head_value |
75
|
|
|
tail_df[part_column] = tail_value |
76
|
|
|
|
77
|
|
|
return (pd.concat([head_df, tail_df]) |
78
|
|
|
.drop_duplicates() |
79
|
|
|
.reset_index(drop=True)) |
80
|
|
|
|