| 1 |  |  | import copy | 
            
                                                                                                            
                            
            
                                    
            
            
                | 2 |  |  | import os | 
            
                                                                                                            
                            
            
                                    
            
            
                | 3 |  |  | import warnings | 
            
                                                                                                            
                            
            
                                    
            
            
                | 4 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 5 |  |  | import matplotlib.pylab as plt | 
            
                                                                                                            
                            
            
                                    
            
            
                | 6 |  |  | import numpy as np | 
            
                                                                                                            
                            
            
                                    
            
            
                | 7 |  |  | import pandas as pd | 
            
                                                                                                            
                            
            
                                    
            
            
                | 8 |  |  | import seaborn as sns | 
            
                                                                                                            
                            
            
                                    
            
            
                | 9 |  |  | from gensim.models.keyedvectors import KeyedVectors | 
            
                                                                                                            
                            
            
                                    
            
            
                | 10 |  |  | from pkg_resources import resource_filename | 
            
                                                                                                            
                            
            
                                    
            
            
                | 11 |  |  | from sklearn.decomposition import PCA | 
            
                                                                                                            
                            
            
                                    
            
            
                | 12 |  |  | from sklearn.svm import LinearSVC | 
            
                                                                                                            
                            
            
                                    
            
            
                | 13 |  |  | from tqdm import tqdm | 
            
                                                                                                            
                            
            
                                    
            
            
                | 14 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 15 |  |  | from ..consts import RANDOM_STATE | 
            
                                                                                                            
                            
            
                                    
            
            
                | 16 |  |  | from .utils import ( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 17 |  |  |     cosine_similarity, normalize, project_reject_vector, project_vector, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 18 |  |  |     reject_vector, update_word_vector, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 19 |  |  | ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 20 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 21 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 22 |  |  | DIRECTION_METHODS = ['single', 'sum', 'pca'] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 23 |  |  | DEBIAS_METHODS = ['neutralize', 'hard', 'soft'] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 24 |  |  | FIRST_PC_THRESHOLD = 0.5 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 25 |  |  | MAX_NON_SPECIFIC_EXAMPLES = 1000 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 26 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 27 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 28 |  |  | class BiasWordsEmbedding: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 29 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 30 |  |  |     def __init__(self, model, only_lower=True): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 31 |  |  |         if not isinstance(model, KeyedVectors): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 32 |  |  |             raise TypeError('model should be of type KeyedVectors, not {}' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 33 |  |  |                             .format(type(model))) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 34 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 35 |  |  |         self.model = model | 
            
                                                                                                            
                            
            
                                    
            
            
                | 36 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 37 |  |  |         # TODO: write unitest for when it is False | 
            
                                                                                                            
                            
            
                                    
            
            
                | 38 |  |  |         self.only_lower = only_lower | 
            
                                                                                                            
                            
            
                                    
            
            
                | 39 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 40 |  |  |         self.direction = None | 
            
                                                                                                            
                            
            
                                    
            
            
                | 41 |  |  |         self.positive_end = None | 
            
                                                                                                            
                            
            
                                    
            
            
                | 42 |  |  |         self.negative_end = None | 
            
                                                                                                            
                            
            
                                    
            
            
                | 43 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 44 |  |  |     def __copy__(self): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 45 |  |  |         bias_words_embedding = self.__class__(self.model) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 46 |  |  |         bias_words_embedding.direction = copy.deepcopy(self.direction) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 47 |  |  |         bias_words_embedding.positive_end = copy.deepcopy(self.positive_end) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 48 |  |  |         bias_words_embedding.negative_end = copy.deepcopy(self.negative_end) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 49 |  |  |         return bias_words_embedding | 
            
                                                                                                            
                            
            
                                    
            
            
                | 50 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 51 |  |  |     def __deepcopy__(self, memo): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 52 |  |  |         bias_words_embedding = copy.copy(self) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 53 |  |  |         bias_words_embedding.model = copy.deepcopy(bias_words_embedding.model) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 54 |  |  |         return bias_words_embedding | 
            
                                                                                                            
                            
            
                                    
            
            
                | 55 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 56 |  |  |     def __getitem__(self, key): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 57 |  |  |         return self.model[key] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 58 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 59 |  |  |     def __contains__(self, item): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 60 |  |  |         return item in self.model | 
            
                                                                                                            
                            
            
                                    
            
            
                | 61 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 62 |  |  |     def _filter_words_by_model(self, words): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 63 |  |  |         return [word for word in words if word in self] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 64 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 65 |  |  |     def _is_direction_identified(self): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 66 |  |  |         if self.direction is None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 67 |  |  |             raise RuntimeError('The direction was not identified' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 68 |  |  |                                ' for this {} instance' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 69 |  |  |                                .format(self.__class__.__name__)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 70 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 71 |  |  |     # There is a mistake in the article | 
            
                                                                                                            
                            
            
                                    
            
            
                | 72 |  |  |     # it is written (section 5.1): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 73 |  |  |     # "To identify the gender subspace, we took the ten gender pair difference | 
            
                                                                                                            
                            
            
                                    
            
            
                | 74 |  |  |     # vectors and computed its principal components (PCs)" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 75 |  |  |     # however in the source code: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 76 |  |  |     # https://github.com/tolga-b/debiaswe/blob/10277b23e187ee4bd2b6872b507163ef4198686b/debiaswe/we.py#L235-L245 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 77 |  |  |     def _identify_subspace_by_pca(self, definitional_pairs, n_components): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 78 |  |  |         matrix = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 79 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 80 |  |  |         for word1, word2 in definitional_pairs: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 81 |  |  |             vector1 = normalize(self[word1]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 82 |  |  |             vector2 = normalize(self[word2]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 83 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 84 |  |  |             center = (vector1 + vector2) / 2 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 85 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 86 |  |  |             matrix.append(vector1 - center) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 87 |  |  |             matrix.append(vector2 - center) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 88 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 89 |  |  |         pca = PCA(n_components=n_components) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 90 |  |  |         pca.fit(matrix) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 91 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 92 |  |  |         return pca | 
            
                                                                                                            
                            
            
                                    
            
            
                | 93 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 94 |  |  |     # TODO: add the SVD method from section 6 step 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 95 |  |  |     # It seems there is a mistake there, I think it is the same as PCA | 
            
                                                                                                            
                            
            
                                    
            
            
                | 96 |  |  |     # just with repleacing it with SVD | 
            
                                                                                                            
                            
            
                                    
            
            
                | 97 |  |  |     def _identify_direction(self, positive_end, negative_end, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 98 |  |  |                             definitional, method='pca'): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 99 |  |  |         if method not in DIRECTION_METHODS: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 100 |  |  |             raise ValueError('method should be one of {}, {} was given'.format( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 101 |  |  |                 DIRECTION_METHODS, method)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 102 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 103 |  |  |         if positive_end == negative_end: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 104 |  |  |             raise ValueError('positive_end and negative_end' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 105 |  |  |                              'should be different, and not the same "{}"' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 106 |  |  |                              .format(positive_end)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 107 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 108 |  |  |         direction = None | 
            
                                                                                                            
                            
            
                                    
            
            
                | 109 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 110 |  |  |         if method == 'single': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 111 |  |  |             direction = normalize(normalize(self[definitional[0]]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 112 |  |  |                                   - normalize(self[definitional[1]])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 113 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 114 |  |  |         elif method == 'sum': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 115 |  |  |             groups = list(zip(*definitional)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 116 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 117 |  |  |             group1_sum_vector = np.sum([self[word] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 118 |  |  |                                         for word in groups[0]], axis=0) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 119 |  |  |             group2_sum_vector = np.sum([self[word] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 120 |  |  |                                         for word in groups[1]], axis=0) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 121 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 122 |  |  |             diff_vector = (normalize(group1_sum_vector) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 123 |  |  |                            - normalize(group2_sum_vector)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 124 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 125 |  |  |             direction = normalize(diff_vector) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 126 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 127 |  |  |         elif method == 'pca': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 128 |  |  |             pca = self._identify_subspace_by_pca(definitional, 1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 129 |  |  |             if pca.explained_variance_ratio_[0] < FIRST_PC_THRESHOLD: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 130 |  |  |                 raise RuntimeError('The Explained variance' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 131 |  |  |                                    'of the first principal component should be' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 132 |  |  |                                    'at least {}, but it is {}' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 133 |  |  |                                    .format(FIRST_PC_THRESHOLD, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 134 |  |  |                                            pca.explained_variance_ratio_[0])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 135 |  |  |             direction = pca.components_[0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 136 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 137 |  |  |         # if direction is oposite (e.g. we cannot control | 
            
                                                                                                            
                            
            
                                    
            
            
                | 138 |  |  |         # what the PCA will return) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 139 |  |  |         ends_diff_projection = cosine_similarity((self[positive_end] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 140 |  |  |                                                   - self[negative_end]), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 141 |  |  |                                                  direction) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 142 |  |  |         if ends_diff_projection < 0: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 143 |  |  |             direction = -direction  # pylint: disable=invalid-unary-operand-type | 
            
                                                                                                            
                            
            
                                    
            
            
                | 144 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 145 |  |  |         self.direction = direction | 
            
                                                                                                            
                            
            
                                    
            
            
                | 146 |  |  |         self.positive_end = positive_end | 
            
                                                                                                            
                            
            
                                    
            
            
                | 147 |  |  |         self.negative_end = negative_end | 
            
                                                                                                            
                            
            
                                    
            
            
                | 148 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 149 |  |  |     def project_on_direction(self, word): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 150 |  |  |         self._is_direction_identified() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 151 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 152 |  |  |         vector = self[word] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 153 |  |  |         projection_score = self.model.cosine_similarities(self.direction, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 154 |  |  |                                                           [vector])[0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 155 |  |  |         return projection_score | 
            
                                                                                                            
                            
            
                                    
            
            
                | 156 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 157 |  |  |     def _calc_projection_scores(self, words): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 158 |  |  |         self._is_direction_identified() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 159 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 160 |  |  |         df = pd.DataFrame({'word': words}) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 161 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 162 |  |  |         # TODO: maybe using cosine_similarities on all the vectors? | 
            
                                                                                                            
                            
            
                                    
            
            
                | 163 |  |  |         # it might be faster | 
            
                                                                                                            
                            
            
                                    
            
            
                | 164 |  |  |         df['projection'] = df['word'].apply(self.project_on_direction) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 165 |  |  |         df = df.sort_values('projection', ascending=False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 166 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 167 |  |  |         return df | 
            
                                                                                                            
                            
            
                                    
            
            
                | 168 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 169 |  |  |     def plot_projection_scores(self, words, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 170 |  |  |                                ax=None, axis_projection_step=None): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 171 |  |  |         self._is_direction_identified() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 172 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 173 |  |  |         projections_df = self._calc_projection_scores(words) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 174 |  |  |         projections_df['projection'] = projections_df['projection'].round(2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 175 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 176 |  |  |         if ax is None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 177 |  |  |             _, ax = plt.subplots(1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 178 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 179 |  |  |         if axis_projection_step is None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 180 |  |  |             axis_projection_step = 0.1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 181 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 182 |  |  |         cmap = plt.get_cmap('RdBu') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 183 |  |  |         projections_df['color'] = ((projections_df['projection'] + 0.5) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 184 |  |  |                                    .apply(cmap)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 185 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 186 |  |  |         most_extream_projection = (projections_df['projection'] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 187 |  |  |                                    .abs() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 188 |  |  |                                    .max() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 189 |  |  |                                    .round(1)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 190 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 191 |  |  |         sns.barplot(x='projection', y='word', data=projections_df, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 192 |  |  |                     palette=projections_df['color']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 193 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 194 |  |  |         plt.xticks(np.arange(-most_extream_projection, most_extream_projection, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 195 |  |  |                              axis_projection_step)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 196 |  |  |         plt.title('← {} {} {} →'.format(self.negative_end, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 197 |  |  |                                         ' ' * 20, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 198 |  |  |                                         self.positive_end)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 199 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 200 |  |  |         plt.xlabel('Direction Projection') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 201 |  |  |         plt.ylabel('Words') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 202 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 203 |  |  |     def calc_direct_bias(self, neutral_words, c=None): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 204 |  |  |         if c is None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 205 |  |  |             c = 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 206 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 207 |  |  |         projections = self._calc_projection_scores(neutral_words)['projection'] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 208 |  |  |         direct_bias_terms = np.abs(projections) ** c | 
            
                                                                                                            
                            
            
                                    
            
            
                | 209 |  |  |         direct_bias = direct_bias_terms.sum() / len(neutral_words) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 210 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 211 |  |  |         return direct_bias | 
            
                                                                                                            
                            
            
                                    
            
            
                | 212 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 213 |  |  |     def calc_indirect_bias(self, word1, word2): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 214 |  |  |         """Also known in the article as PairBias.""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 215 |  |  |         self._is_direction_identified() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 216 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 217 |  |  |         vector1 = normalize(self[word1]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 218 |  |  |         vector2 = normalize(self[word2]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 219 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 220 |  |  |         perpendicular_vector1 = reject_vector(vector1, self.direction) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 221 |  |  |         perpendicular_vector2 = reject_vector(vector2, self.direction) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 222 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 223 |  |  |         inner_product = vector1 @ vector2 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 224 |  |  |         perpendicular_similarity = cosine_similarity(perpendicular_vector1, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 225 |  |  |                                                      perpendicular_vector2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 226 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 227 |  |  |         indirect_bias = ((inner_product - perpendicular_similarity) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 228 |  |  |                          / inner_product) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 229 |  |  |         return indirect_bias | 
            
                                                                                                            
                            
            
                                    
            
            
                | 230 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 231 |  |  |     def _extract_neutral_words(self, specific_words): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 232 |  |  |         extended_specific_words = set() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 233 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 234 |  |  |         # because or specific_full data was trained on partial words embedding | 
            
                                                                                                            
                            
            
                                    
            
            
                | 235 |  |  |         for word in specific_words: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 236 |  |  |             extended_specific_words.add(word) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 237 |  |  |             extended_specific_words.add(word.lower()) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 238 |  |  |             extended_specific_words.add(word.upper()) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 239 |  |  |             extended_specific_words.add(word.title()) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 240 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 241 |  |  |         neutral_words = [word for word in self.model.vocab | 
            
                                                                                                            
                            
            
                                    
            
            
                | 242 |  |  |                          if word not in extended_specific_words] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 243 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 244 |  |  |         return neutral_words | 
            
                                                                                                            
                            
            
                                    
            
            
                | 245 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 246 |  |  |     def _neutralize(self, neutral_words, verbose=False): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 247 |  |  |         self._is_direction_identified() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 248 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 249 |  |  |         if verbose: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 250 |  |  |             neutral_words_iter = tqdm(neutral_words) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 251 |  |  |         else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 252 |  |  |             neutral_words_iter = iter(neutral_words) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 253 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 254 |  |  |         for word in neutral_words_iter: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 255 |  |  |             neutralized_vector = reject_vector(self[word], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 256 |  |  |                                                self.direction) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 257 |  |  |             update_word_vector(self.model, word, neutralized_vector) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 258 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 259 |  |  |         self.model.init_sims(replace=True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 260 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 261 |  |  |     def _equalize(self, equality_sets): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 262 |  |  |         for equality_set_words in equality_sets: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 263 |  |  |             equality_set_vectors = [normalize(self[word]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 264 |  |  |                                     for word in equality_set_words] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 265 |  |  |             center = np.mean(equality_set_vectors, axis=0) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 266 |  |  |             (projected_center, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 267 |  |  |              rejected_center) = project_reject_vector(center, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 268 |  |  |                                                       self.direction) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 269 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 270 |  |  |             for word, vector in zip(equality_set_words, equality_set_vectors): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 271 |  |  |                 projected_vector = project_vector(vector, self.direction) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 272 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 273 |  |  |                 projected_part = normalize(projected_vector - projected_center) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 274 |  |  |                 scaling = np.sqrt(1 - np.linalg.norm(rejected_center)**2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 275 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 276 |  |  |                 # TODO - in the code it is different - why? | 
            
                                                                                                            
                            
            
                                    
            
            
                | 277 |  |  |                 # equalized_vector = rejected_center + scaling * self.direction | 
            
                                                                                                            
                            
            
                                    
            
            
                | 278 |  |  |                 # https://github.com/tolga-b/debiaswe/blob/10277b23e187ee4bd2b6872b507163ef4198686b/debiaswe/debias.py#L36-L37 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 279 |  |  |                 equalized_vector = rejected_center + scaling * projected_part | 
            
                                                                                                            
                            
            
                                    
            
            
                | 280 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 281 |  |  |                 update_word_vector(self.model, word, equalized_vector) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 282 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 283 |  |  |         self.model.init_sims(replace=True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 284 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 285 |  |  |     def debias(self, method='hard', neutral_words=None, equality_sets=None, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 286 |  |  |                inplace=True, verbose=False): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 287 |  |  |         # pylint: disable=W0212 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 288 |  |  |         if inplace: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 289 |  |  |             bias_words_embedding = self | 
            
                                                                                                            
                            
            
                                    
            
            
                | 290 |  |  |         else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 291 |  |  |             bias_words_embedding = copy.deepcopy(self) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 292 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 293 |  |  |         if method not in DEBIAS_METHODS: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 294 |  |  |             raise ValueError('method should be one of {}, {} was given'.format( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 295 |  |  |                 DEBIAS_METHODS, method)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 296 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 297 |  |  |         if method in ['hard', 'neutralize']: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 298 |  |  |             if verbose: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 299 |  |  |                 print('Neutralize...') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 300 |  |  |             bias_words_embedding._neutralize(neutral_words, verbose) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 301 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 302 |  |  |         if method == 'hard': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 303 |  |  |             if verbose: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 304 |  |  |                 print('Equalize...') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 305 |  |  |             bias_words_embedding._equalize(equality_sets) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 306 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 307 |  |  |         if inplace: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 308 |  |  |             return None | 
            
                                                                                                            
                            
            
                                    
            
            
                | 309 |  |  |         else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 310 |  |  |             return bias_words_embedding | 
            
                                                                                                            
                            
            
                                    
            
            
                | 311 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 312 |  |  |     def evaluate_words_embedding(self, verbose=False): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 313 |  |  |         with warnings.catch_warnings(): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 314 |  |  |             warnings.simplefilter('ignore', category=FutureWarning) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 315 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 316 |  |  |             if verbose: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 317 |  |  |                 print('Evaluate word pairs...') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 318 |  |  |             word_pairs_path = resource_filename(__name__, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 319 |  |  |                                                 os.path.join('data', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 320 |  |  |                                                              'evaluation', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 321 |  |  |                                                              'wordsim353.tsv')) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 322 |  |  |             word_paris_result = self.model.evaluate_word_pairs(word_pairs_path) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 323 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 324 |  |  |             if verbose: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 325 |  |  |                 print('Evaluate analogies...') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 326 |  |  |             analogies_path = resource_filename(__name__, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 327 |  |  |                                                os.path.join('data', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 328 |  |  |                                                             'evaluation', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 329 |  |  |                                                             'questions-words.txt'))  # pylint: disable=C0301 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 330 |  |  |             analogies_result = self.model.evaluate_word_analogies(analogies_path)  # pylint: disable=C0301 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 331 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 332 |  |  |         if verbose: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 333 |  |  |             print() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 334 |  |  |         print('From Gensim') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 335 |  |  |         print() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 336 |  |  |         print('-' * 30) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 337 |  |  |         print() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 338 |  |  |         print('Word Pairs Result - WordSimilarity-353:') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 339 |  |  |         print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 340 |  |  |         print('Pearson correlation coefficient:', word_paris_result[0]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 341 |  |  |         print('Spearman rank-order correlation coefficient' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 342 |  |  |               'between the similarities from the dataset' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 343 |  |  |               'and the similarities produced by the model itself:', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 344 |  |  |               word_paris_result[1]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 345 |  |  |         print('Ratio of pairs with unknown words:', word_paris_result[2]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 346 |  |  |         print() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 347 |  |  |         print('-' * 30) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 348 |  |  |         print() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 349 |  |  |         print('Analogies Result') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 350 |  |  |         print('~~~~~~~~~~~~~~~~') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 351 |  |  |         print('Overall evaluation score:', analogies_result[0]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 352 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 353 |  |  |     def learn_full_specific_words(self, seed_specific_words, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 354 |  |  |                                   max_non_specific_examples=None, debug=None): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 355 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 356 |  |  |         if debug is None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 357 |  |  |             debug = False | 
            
                                                                                                            
                            
            
                                    
            
            
                | 358 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 359 |  |  |         if max_non_specific_examples is None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 360 |  |  |             max_non_specific_examples = MAX_NON_SPECIFIC_EXAMPLES | 
            
                                                                                                            
                            
            
                                    
            
            
                | 361 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 362 |  |  |         data = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 363 |  |  |         non_specific_example_count = 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 364 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 365 |  |  |         for word in self.model.vocab: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 366 |  |  |             is_specific = word in seed_specific_words | 
            
                                                                                                            
                            
            
                                    
            
            
                | 367 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 368 |  |  |             if not is_specific: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 369 |  |  |                 non_specific_example_count += 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 370 |  |  |                 if non_specific_example_count <= max_non_specific_examples: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 371 |  |  |                     data.append((self[word], is_specific)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 372 |  |  |             else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 373 |  |  |                 data.append((self[word], is_specific)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 374 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 375 |  |  |         np.random.seed(RANDOM_STATE) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 376 |  |  |         np.random.shuffle(data) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 377 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 378 |  |  |         X, y = zip(*data) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 379 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 380 |  |  |         X = np.array(X) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 381 |  |  |         X /= np.linalg.norm(X, axis=1)[:, None] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 382 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 383 |  |  |         y = np.array(y).astype('int') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 384 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 385 |  |  |         clf = LinearSVC(C=1, class_weight='balanced', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 386 |  |  |                         random_state=RANDOM_STATE) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 387 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 388 |  |  |         clf.fit(X, y) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 389 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 390 |  |  |         full_specific_words = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 391 |  |  |         for word in self.model.vocab: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 392 |  |  |             vector = [normalize(self[word])] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 393 |  |  |             if clf.predict(vector): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 394 |  |  |                 full_specific_words.append(word) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 395 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 396 |  |  |         if not debug: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 397 |  |  |             return full_specific_words, clf | 
            
                                                                                                            
                            
            
                                    
            
            
                | 398 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 399 |  |  |         return full_specific_words, clf, X, y | 
            
                                                                                                            
                            
            
                                    
            
            
                | 400 |  |  |  |