| Total Complexity | 49 |
| Total Lines | 803 |
| Duplicated Lines | 15.44 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like responsibly.fairness.interventions.threshold often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """ |
||
| 2 | Post-processing fairness intervension by choosing thresholds. |
||
| 3 | |||
| 4 | There are multiple definitions for choosing the thresholds: |
||
| 5 | |||
| 6 | 1. Single threshold for all the sensitive attribute values |
||
| 7 | that minimizes cost. |
||
| 8 | 2. A threshold for each sensitive attribute value |
||
| 9 | that minimize cost. |
||
| 10 | 3. A threshold for each sensitive attribute value |
||
| 11 | that achieve independence and minimize cost. |
||
| 12 | 4. A threshold for each sensitive attribute value |
||
| 13 | that achieve equal FNR (equal opportunity) and minimize cost. |
||
| 14 | 5. A threshold for each sensitive attribute value |
||
| 15 | that achieve separation (equalized odds) and minimize cost. |
||
| 16 | |||
| 17 | The code is based on `fairmlbook repository <https://github.com/fairmlbook/fairmlbook.github.io>`_. |
||
| 18 | |||
| 19 | References: |
||
| 20 | - Hardt, M., Price, E., & Srebro, N. (2016). |
||
| 21 | `Equality of opportunity in supervised learning |
||
| 22 | <https://arxiv.org/abs/1610.02413>`_ |
||
| 23 | In Advances in neural information processing systems |
||
| 24 | (pp. 3315-3323). |
||
| 25 | - `Attacking discrimination with |
||
| 26 | smarter machine learning by Google |
||
| 27 | <https://research.google.com/bigpicture/attacking-discrimination-in-ml/>`_. |
||
| 28 | |||
| 29 | """ |
||
| 30 | |||
| 31 | # pylint: disable=no-name-in-module,ungrouped-imports |
||
| 32 | |||
| 33 | from collections import Counter |
||
| 34 | |||
| 35 | import matplotlib.pylab as plt |
||
| 36 | import numpy as np |
||
| 37 | import pandas as pd |
||
| 38 | import seaborn as sns |
||
| 39 | from matplotlib.ticker import AutoMinorLocator |
||
| 40 | from scipy.spatial import Delaunay |
||
| 41 | |||
| 42 | from responsibly.fairness.metrics.score import roc_curve_by_attr |
||
| 43 | from responsibly.fairness.metrics.utils import _groupby_y_x_sens |
||
| 44 | from responsibly.fairness.metrics.visualization import plot_roc_curves |
||
| 45 | |||
| 46 | |||
| 47 | TRINARY_SEARCH_TOL = 1e-3 |
||
| 48 | |||
| 49 | |||
| 50 | def _strictly_increasing(arr): |
||
| 51 | return (np.diff(arr) >= 0).all() |
||
| 52 | |||
| 53 | |||
| 54 | def _titlify(text): |
||
| 55 | text = text.replace('_', ' ').title() |
||
| 56 | if text == 'Fnr': |
||
| 57 | text = 'FNR' |
||
| 58 | return text |
||
| 59 | |||
| 60 | |||
| 61 | def _ternary_search_float(f, left, right, tol): |
||
| 62 | """Trinary search: minimize f(x) over [left, right], to within +/-tol in x. |
||
| 63 | |||
| 64 | Works assuming f is quasiconvex. |
||
| 65 | """ |
||
| 66 | |||
| 67 | while right - left > tol: |
||
| 68 | left_third = (2 * left + right) / 3 |
||
| 69 | right_third = (left + 2 * right) / 3 |
||
| 70 | if f(left_third) < f(right_third): |
||
| 71 | right = right_third |
||
| 72 | else: |
||
| 73 | left = left_third |
||
| 74 | return (right + left) / 2 |
||
| 75 | |||
| 76 | |||
| 77 | def _ternary_search_domain(f, domain): |
||
| 78 | """Trinary search: minimize f(x) over a domain (sequence). |
||
| 79 | |||
| 80 | Works assuming f is quasiconvex and domain is ascending sorted. |
||
| 81 | |||
| 82 | BUGGY, DO NOT USE |
||
| 83 | |||
| 84 | >>> arr = np.concatenate([np.arange(10, 2, -1), np.arange(2, 20)]) |
||
| 85 | >>> t1 = _ternary_search_domain(lambda t: arr[t], range(len(arr))) |
||
| 86 | >>> t2 = np.argmin(arr) |
||
| 87 | |||
| 88 | >>> assert t1 == t2 |
||
| 89 | >>> assert arr[t1] == arr[t2] |
||
| 90 | """ |
||
| 91 | |||
| 92 | left = 0 |
||
| 93 | right = len(domain) - 1 |
||
| 94 | changed = True |
||
| 95 | |||
| 96 | while changed and left != right: |
||
| 97 | |||
| 98 | changed = False |
||
| 99 | |||
| 100 | left_third = (2 * left + right) // 3 |
||
| 101 | right_third = (left + 2 * right) // 3 |
||
| 102 | |||
| 103 | if f(domain[left_third]) < f(domain[right_third]): |
||
| 104 | right = right_third - 1 |
||
| 105 | changed = True |
||
| 106 | else: |
||
| 107 | left = left_third + 1 |
||
| 108 | changed = True |
||
| 109 | |||
| 110 | return domain[(left + right) // 2] |
||
| 111 | |||
| 112 | |||
| 113 | def _cost_function(fpr, tpr, base_rate, cost_matrix): |
||
| 114 | """Compute the cost of given (fpr, tpr). |
||
| 115 | |||
| 116 | [[tn, fp], [fn, tp]] |
||
| 117 | """ |
||
| 118 | |||
| 119 | fp = fpr * (1 - base_rate) |
||
| 120 | tn = (1 - base_rate) - fp |
||
| 121 | tp = tpr * base_rate |
||
| 122 | fn = base_rate - tp |
||
| 123 | |||
| 124 | conf_matrix = np.array([tn, fp, fn, tp]) |
||
| 125 | |||
| 126 | return (conf_matrix * np.array(cost_matrix).ravel()).sum() |
||
| 127 | |||
| 128 | |||
| 129 | def _extract_threshold(roc_curves): |
||
| 130 | return next(iter(roc_curves.values()))[2] |
||
| 131 | |||
| 132 | |||
| 133 | def _first_index_above(arr, value): |
||
| 134 | """Find the smallest index i for which array[i] > value. |
||
| 135 | |||
| 136 | If no such value exists, return len(array). |
||
| 137 | """ |
||
| 138 | |||
| 139 | assert _strictly_increasing(arr), ( |
||
| 140 | 'arr should be stricktly increasing.') |
||
| 141 | |||
| 142 | arr = np.array(arr) |
||
| 143 | v = np.concatenate([arr > value, [1]]) |
||
| 144 | return np.argmax(v, axis=0) |
||
| 145 | |||
| 146 | |||
| 147 | def _calc_acceptance_rate(fpr, tpr, base_rate): |
||
| 148 | return (fpr * (1 - base_rate) |
||
| 149 | + tpr * base_rate) |
||
| 150 | |||
| 151 | |||
| 152 | def find_single_threshold(roc_curves, base_rates, proportions, |
||
| 153 | cost_matrix): |
||
| 154 | """Compute single threshold that minimizes cost. |
||
| 155 | |||
| 156 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 157 | by attribute. |
||
| 158 | :type roc_curves: dict |
||
| 159 | :param base_rates: Base rate by attribute. |
||
| 160 | :type base_rates: dict |
||
| 161 | :param proportions: Proportion of each attribute value. |
||
| 162 | :type proportions: dict |
||
| 163 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
| 164 | :type cost_matrix: sequence |
||
| 165 | :return: Threshold, FPR and TPR by attribute and cost value. |
||
| 166 | :rtype: tuple |
||
| 167 | |||
| 168 | """ |
||
| 169 | |||
| 170 | def total_cost_function(index): |
||
| 171 | total_cost = 0 |
||
| 172 | |||
| 173 | for group, roc in roc_curves.items(): |
||
| 174 | fpr = roc[0][index] |
||
| 175 | tpr = roc[1][index] |
||
| 176 | |||
| 177 | group_cost = _cost_function(fpr, tpr, |
||
| 178 | base_rates[group], cost_matrix) |
||
| 179 | |||
| 180 | group_cost *= proportions[group] |
||
| 181 | |||
| 182 | total_cost += group_cost |
||
| 183 | |||
| 184 | return -total_cost |
||
| 185 | |||
| 186 | thresholds = _extract_threshold(roc_curves) |
||
| 187 | |||
| 188 | cost_per_threshold = [total_cost_function(index) |
||
| 189 | for index in range(len(thresholds))] |
||
| 190 | cutoff_index = np.argmin(cost_per_threshold) |
||
| 191 | |||
| 192 | fpr_tpr = {group: (roc[0][cutoff_index], roc[1][cutoff_index]) |
||
| 193 | for group, roc in roc_curves.items()} |
||
| 194 | |||
| 195 | cost = total_cost_function(cutoff_index) |
||
| 196 | |||
| 197 | return thresholds[cutoff_index], fpr_tpr, cost |
||
| 198 | |||
| 199 | |||
| 200 | def find_min_cost_thresholds(roc_curves, base_rates, proportions, cost_matrix): |
||
| 201 | """Compute thresholds by attribute values that minimize cost. |
||
| 202 | |||
| 203 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 204 | by attribute. |
||
| 205 | :type roc_curves: dict |
||
| 206 | :param base_rates: Base rate by attribute. |
||
| 207 | :type base_rates: dict |
||
| 208 | :param proportions: Proportion of each attribute value. |
||
| 209 | :type proportions: dict |
||
| 210 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
| 211 | :type cost_matrix: sequence |
||
| 212 | :return: Thresholds, FPR and TPR by attribute and cost value. |
||
| 213 | :rtype: tuple |
||
| 214 | |||
| 215 | """ |
||
| 216 | # pylint: disable=cell-var-from-loop |
||
| 217 | |||
| 218 | cutoffs = {} |
||
| 219 | fpr_tpr = {} |
||
| 220 | |||
| 221 | cost = 0 |
||
| 222 | thresholds = _extract_threshold(roc_curves) |
||
| 223 | |||
| 224 | for group, roc in roc_curves.items(): |
||
| 225 | def group_cost_function(index): |
||
| 226 | fpr = roc[0][index] |
||
| 227 | tpr = roc[1][index] |
||
| 228 | return -_cost_function(fpr, tpr, |
||
| 229 | base_rates[group], cost_matrix) |
||
| 230 | |||
| 231 | cost_per_threshold = [group_cost_function(index) |
||
| 232 | for index in range(len(thresholds))] |
||
| 233 | cutoff_index = np.argmin(cost_per_threshold) |
||
| 234 | |||
| 235 | cutoffs[group] = thresholds[cutoff_index] |
||
| 236 | |||
| 237 | fpr_tpr[group] = (roc[0][cutoff_index], |
||
| 238 | roc[1][cutoff_index]) |
||
| 239 | |||
| 240 | cost += group_cost_function(cutoff_index) * proportions[group] |
||
| 241 | |||
| 242 | return cutoffs, fpr_tpr, cost |
||
| 243 | |||
| 244 | |||
| 245 | def get_acceptance_rate_indices(roc_curves, base_rates, |
||
| 246 | acceptance_rate_value): |
||
| 247 | indices = {} |
||
| 248 | |||
| 249 | for group, roc in roc_curves.items(): |
||
| 250 | # can be calculated outside the function |
||
| 251 | acceptance_rates = _calc_acceptance_rate(fpr=roc[0], |
||
| 252 | tpr=roc[1], |
||
| 253 | base_rate=base_rates[group]) |
||
| 254 | |||
| 255 | index = _first_index_above(acceptance_rates, |
||
| 256 | acceptance_rate_value) |
||
| 257 | |||
| 258 | indices[group] = index |
||
| 259 | |||
| 260 | return indices |
||
| 261 | |||
| 262 | |||
| 263 | View Code Duplication | def find_independence_thresholds(roc_curves, base_rates, proportions, |
|
| 264 | cost_matrix): |
||
| 265 | """Compute thresholds that achieve independence and minimize cost. |
||
| 266 | |||
| 267 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 268 | by attribute. |
||
| 269 | :type roc_curves: dict |
||
| 270 | :param base_rates: Base rate by attribute. |
||
| 271 | :type base_rates: dict |
||
| 272 | :param proportions: Proportion of each attribute value. |
||
| 273 | :type proportions: dict |
||
| 274 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
| 275 | :type cost_matrix: sequence |
||
| 276 | :return: Thresholds, FPR and TPR by attribute and cost value. |
||
| 277 | :rtype: tuple |
||
| 278 | |||
| 279 | """ |
||
| 280 | |||
| 281 | cutoffs = {} |
||
| 282 | |||
| 283 | def total_cost_function(acceptance_rate_value): |
||
| 284 | # todo: move demo here + multiple cost |
||
| 285 | # + refactor - use threshold to calculate |
||
| 286 | # acceptance_rate_value |
||
| 287 | indices = get_acceptance_rate_indices(roc_curves, base_rates, |
||
| 288 | acceptance_rate_value) |
||
| 289 | |||
| 290 | total_cost = 0 |
||
| 291 | |||
| 292 | for group, roc in roc_curves.items(): |
||
| 293 | index = indices[group] |
||
| 294 | |||
| 295 | fpr = roc[0][index] |
||
| 296 | tpr = roc[1][index] |
||
| 297 | |||
| 298 | group_cost = _cost_function(fpr, tpr, |
||
| 299 | base_rates[group], |
||
| 300 | cost_matrix) |
||
| 301 | |||
| 302 | group_cost *= proportions[group] |
||
| 303 | |||
| 304 | total_cost += group_cost |
||
| 305 | |||
| 306 | return -total_cost |
||
| 307 | |||
| 308 | acceptance_rate_min_cost = _ternary_search_float(total_cost_function, |
||
| 309 | 0, 1, TRINARY_SEARCH_TOL) |
||
| 310 | |||
| 311 | cost = total_cost_function(acceptance_rate_min_cost) |
||
| 312 | |||
| 313 | threshold_indices = get_acceptance_rate_indices(roc_curves, base_rates, |
||
| 314 | acceptance_rate_min_cost) |
||
| 315 | thresholds = _extract_threshold(roc_curves) |
||
| 316 | |||
| 317 | cutoffs = {group: thresholds[threshold_index] |
||
| 318 | for group, threshold_index |
||
| 319 | in threshold_indices.items()} |
||
| 320 | |||
| 321 | fpr_tpr = {group: (roc[0][threshold_indices[group]], |
||
| 322 | roc[1][threshold_indices[group]]) |
||
| 323 | for group, roc in roc_curves.items()} |
||
| 324 | |||
| 325 | return cutoffs, fpr_tpr, cost, acceptance_rate_min_cost |
||
| 326 | |||
| 327 | |||
| 328 | def get_fnr_indices(roc_curves, fnr_value): |
||
| 329 | indices = {} |
||
| 330 | |||
| 331 | tpr_value = 1 - fnr_value |
||
| 332 | |||
| 333 | for group, roc in roc_curves.items(): |
||
| 334 | tprs = roc[1] |
||
| 335 | index = _first_index_above(tprs, |
||
| 336 | tpr_value) - 1 |
||
| 337 | index = max(0, index) |
||
| 338 | indices[group] = index |
||
| 339 | |||
| 340 | return indices |
||
| 341 | |||
| 342 | |||
| 343 | View Code Duplication | def find_fnr_thresholds(roc_curves, base_rates, proportions, |
|
|
|
|||
| 344 | cost_matrix): |
||
| 345 | """Compute thresholds that achieve equal FNRs and minimize cost. |
||
| 346 | |||
| 347 | Also known as **equal opportunity**. |
||
| 348 | |||
| 349 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 350 | by attribute. |
||
| 351 | :type roc_curves: dict |
||
| 352 | :param base_rates: Base rate by attribute. |
||
| 353 | :type base_rates: dict |
||
| 354 | :param proportions: Proportion of each attribute value. |
||
| 355 | :type proportions: dict |
||
| 356 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
| 357 | :type cost_matrix: sequence |
||
| 358 | :return: Thresholds, FPR and TPR by attribute and cost value. |
||
| 359 | :rtype: tuple |
||
| 360 | |||
| 361 | """ |
||
| 362 | |||
| 363 | cutoffs = {} |
||
| 364 | |||
| 365 | def total_cost_function(fnr_value): |
||
| 366 | # todo: move demo here + multiple cost |
||
| 367 | indices = get_fnr_indices(roc_curves, fnr_value) |
||
| 368 | |||
| 369 | total_cost = 0 |
||
| 370 | |||
| 371 | for group, roc in roc_curves.items(): |
||
| 372 | index = indices[group] |
||
| 373 | |||
| 374 | fpr = roc[0][index] |
||
| 375 | tpr = roc[1][index] |
||
| 376 | |||
| 377 | group_cost = _cost_function(fpr, tpr, |
||
| 378 | base_rates[group], |
||
| 379 | cost_matrix) |
||
| 380 | group_cost *= proportions[group] |
||
| 381 | |||
| 382 | total_cost += group_cost |
||
| 383 | |||
| 384 | return -total_cost |
||
| 385 | |||
| 386 | fnr_value_min_cost = _ternary_search_float(total_cost_function, |
||
| 387 | 0, 1, |
||
| 388 | TRINARY_SEARCH_TOL) |
||
| 389 | |||
| 390 | threshold_indices = get_fnr_indices(roc_curves, fnr_value_min_cost) |
||
| 391 | |||
| 392 | cost = total_cost_function(fnr_value_min_cost) |
||
| 393 | |||
| 394 | fpr_tpr = {group: (roc[0][threshold_indices[group]], |
||
| 395 | roc[1][threshold_indices[group]]) |
||
| 396 | for group, roc in roc_curves.items()} |
||
| 397 | |||
| 398 | thresholds = _extract_threshold(roc_curves) |
||
| 399 | cutoffs = {group: thresholds[threshold_index] |
||
| 400 | for group, threshold_index |
||
| 401 | in threshold_indices.items()} |
||
| 402 | |||
| 403 | return cutoffs, fpr_tpr, cost, fnr_value_min_cost |
||
| 404 | |||
| 405 | |||
| 406 | def _find_feasible_roc(roc_curves): |
||
| 407 | polygons = [Delaunay(list(zip(fprs, tprs))) |
||
| 408 | for group, (fprs, tprs, _) in roc_curves.items()] |
||
| 409 | |||
| 410 | feasible_points = [] |
||
| 411 | |||
| 412 | for poly in polygons: |
||
| 413 | for p in poly.points: |
||
| 414 | |||
| 415 | if all(poly2.find_simplex(p) != -1 for poly2 in polygons): |
||
| 416 | feasible_points.append(p) |
||
| 417 | |||
| 418 | return np.array(feasible_points) |
||
| 419 | |||
| 420 | |||
| 421 | def find_separation_thresholds(roc_curves, base_rate, cost_matrix): |
||
| 422 | """Compute thresholds that achieve separation and minimize cost. |
||
| 423 | |||
| 424 | Also known as **equalized odds**. |
||
| 425 | |||
| 426 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 427 | by attribute. |
||
| 428 | :type roc_curves: dict |
||
| 429 | :param base_rate: Overall base rate. |
||
| 430 | :type base_rate: float |
||
| 431 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
| 432 | :type cost_matrix: sequence |
||
| 433 | :return: Thresholds, FPR and TPR by attribute and cost value. |
||
| 434 | :rtype: tuple |
||
| 435 | |||
| 436 | """ |
||
| 437 | |||
| 438 | feasible_points = _find_feasible_roc(roc_curves) |
||
| 439 | |||
| 440 | cost, (best_fpr, best_tpr) = max((_cost_function(fpr, tpr, base_rate, |
||
| 441 | cost_matrix), |
||
| 442 | (fpr, tpr)) |
||
| 443 | for fpr, tpr in feasible_points) |
||
| 444 | cost = - cost |
||
| 445 | |||
| 446 | return {}, {'': (best_fpr, best_tpr)}, cost |
||
| 447 | |||
| 448 | |||
| 449 | def find_thresholds(roc_curves, proportions, base_rate, |
||
| 450 | base_rates, cost_matrix, |
||
| 451 | with_single=True, with_min_cost=True, |
||
| 452 | with_independence=True, with_fnr=True, |
||
| 453 | with_separation=True): |
||
| 454 | """Compute thresholds that achieve various criteria and minimize cost. |
||
| 455 | |||
| 456 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 457 | by attribute. |
||
| 458 | :type roc_curves: dict |
||
| 459 | :param proportions: Proportion of each attribute value. |
||
| 460 | :type proportions: dict |
||
| 461 | :param base_rate: Overall base rate. |
||
| 462 | :type base_rate: float |
||
| 463 | :param base_rates: Base rate by attribute. |
||
| 464 | :type base_rates: dict |
||
| 465 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
| 466 | :type cost_matrix: sequence |
||
| 467 | |||
| 468 | :param with_single: Compute single threshold. |
||
| 469 | :type with_single: bool |
||
| 470 | :param with_min_cost: Compute minimum cost thresholds. |
||
| 471 | :type with_min_cost: bool |
||
| 472 | :param with_independence: Compute independence thresholds. |
||
| 473 | :type with_independence: bool |
||
| 474 | :param with_fnr: Compute FNR thresholds. |
||
| 475 | :type with_fnr: bool |
||
| 476 | :param with_separation: Compute separation thresholds. |
||
| 477 | :type with_separation: bool |
||
| 478 | |||
| 479 | :return: Dictionary of threshold criteria, |
||
| 480 | and for each criterion: |
||
| 481 | thresholds, FPR and TPR by attribute and cost value. |
||
| 482 | :rtype: dict |
||
| 483 | |||
| 484 | """ |
||
| 485 | |||
| 486 | thresholds = {} |
||
| 487 | |||
| 488 | if with_single: |
||
| 489 | thresholds['single'] = find_single_threshold(roc_curves, |
||
| 490 | base_rates, |
||
| 491 | proportions, |
||
| 492 | cost_matrix) |
||
| 493 | |||
| 494 | if with_min_cost: |
||
| 495 | thresholds['min_cost'] = find_min_cost_thresholds(roc_curves, |
||
| 496 | base_rates, |
||
| 497 | proportions, |
||
| 498 | cost_matrix) |
||
| 499 | |||
| 500 | if with_independence: |
||
| 501 | thresholds['independence'] = find_independence_thresholds(roc_curves, |
||
| 502 | base_rates, |
||
| 503 | proportions, |
||
| 504 | cost_matrix) |
||
| 505 | |||
| 506 | if with_fnr: |
||
| 507 | thresholds['fnr'] = find_fnr_thresholds(roc_curves, |
||
| 508 | base_rates, |
||
| 509 | proportions, |
||
| 510 | cost_matrix) |
||
| 511 | |||
| 512 | if with_separation: |
||
| 513 | thresholds['separation'] = find_separation_thresholds(roc_curves, |
||
| 514 | base_rate, |
||
| 515 | cost_matrix) |
||
| 516 | |||
| 517 | return thresholds |
||
| 518 | |||
| 519 | |||
| 520 | def find_thresholds_by_attr(y_true, y_score, x_sens, |
||
| 521 | cost_matrix, |
||
| 522 | with_single=True, with_min_cost=True, |
||
| 523 | with_independence=True, with_fnr=True, |
||
| 524 | with_separation=True, |
||
| 525 | pos_label=None, sample_weight=None, |
||
| 526 | drop_intermediate=False): |
||
| 527 | """ |
||
| 528 | Compute thresholds that achieve various criteria and minimize cost. |
||
| 529 | |||
| 530 | :param y_true: Binary ground truth (correct) target values. |
||
| 531 | :param y_score: Estimated target score as returned by a classifier. |
||
| 532 | :param x_sens: Sensitive attribute values corresponded to each |
||
| 533 | estimated target. |
||
| 534 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
| 535 | :type cost_matrix: sequence |
||
| 536 | |||
| 537 | :param pos_label: Label considered as positive and others |
||
| 538 | are considered negative. |
||
| 539 | :param sample_weight: Sample weights. |
||
| 540 | :param drop_intermediate: Whether to drop some suboptimal |
||
| 541 | thresholds which would not appear on |
||
| 542 | a plotted ROC curve. |
||
| 543 | This is useful in order to create |
||
| 544 | lighter ROC curves. |
||
| 545 | |||
| 546 | :param with_single: Compute single threshold. |
||
| 547 | :type with_single: bool |
||
| 548 | :param with_min_cost: Compute minimum cost thresholds. |
||
| 549 | :type with_min_cost: bool |
||
| 550 | :param with_independence: Compute independence thresholds. |
||
| 551 | :type with_independence: bool |
||
| 552 | :param with_fnr: Compute FNR thresholds. |
||
| 553 | :type with_fnr: bool |
||
| 554 | :param with_separation: Compute separation thresholds. |
||
| 555 | :type with_separation: bool |
||
| 556 | |||
| 557 | :return: Dictionary of threshold criteria, |
||
| 558 | and for each criterion: |
||
| 559 | thresholds, FPR and TPR by attribute and cost value. |
||
| 560 | :rtype: dict |
||
| 561 | """ |
||
| 562 | # pylint: disable=too-many-locals |
||
| 563 | |||
| 564 | roc_curves = roc_curve_by_attr(y_true, y_score, x_sens, |
||
| 565 | pos_label, sample_weight, |
||
| 566 | drop_intermediate) |
||
| 567 | |||
| 568 | proportions = {value: count / len(x_sens) |
||
| 569 | for value, count in Counter(x_sens).items()} |
||
| 570 | |||
| 571 | if pos_label is None: |
||
| 572 | pos_label = 1 |
||
| 573 | |||
| 574 | base_rate = np.mean(y_true == pos_label) |
||
| 575 | grouped = _groupby_y_x_sens(y_true, y_score, x_sens) |
||
| 576 | |||
| 577 | base_rates = {x_sens_value: np.mean(group['y_true'] == pos_label) |
||
| 578 | for x_sens_value, group in grouped} |
||
| 579 | |||
| 580 | thresholds_data = find_thresholds(roc_curves, |
||
| 581 | proportions, |
||
| 582 | base_rate, |
||
| 583 | base_rates, |
||
| 584 | cost_matrix, |
||
| 585 | with_single, with_min_cost, |
||
| 586 | with_independence, with_fnr, |
||
| 587 | with_separation) |
||
| 588 | |||
| 589 | return thresholds_data |
||
| 590 | |||
| 591 | |||
| 592 | def plot_roc_curves_thresholds(roc_curves, thresholds_data, |
||
| 593 | aucs=None, |
||
| 594 | title='ROC Curves by Attribute', |
||
| 595 | ax=None, figsize=None, |
||
| 596 | title_fontsize='large', |
||
| 597 | text_fontsize='medium'): |
||
| 598 | """Generate the ROC curves by attribute with thresholds. |
||
| 599 | |||
| 600 | Based on :func:`skplt.metrics.plot_roc` |
||
| 601 | |||
| 602 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 603 | by attribute. |
||
| 604 | :type roc_curves: dict |
||
| 605 | :param thresholds_data: Thresholds by attribute from the |
||
| 606 | function |
||
| 607 | :func:`~responsibly.interventions |
||
| 608 | .threshold.find_thresholds`. |
||
| 609 | :type thresholds_data: dict |
||
| 610 | :param aucs: Area Under the ROC (AUC) by attribute. |
||
| 611 | :type aucs: dict |
||
| 612 | :param str title: Title of the generated plot. |
||
| 613 | :param ax: The axes upon which to plot the curve. |
||
| 614 | If `None`, the plot is drawn on a new set of axes. |
||
| 615 | :param tuple figsize: Tuple denoting figure size of the plot |
||
| 616 | e.g. (6, 6). |
||
| 617 | :param title_fontsize: Matplotlib-style fontsizes. |
||
| 618 | Use e.g. 'small', 'medium', 'large' |
||
| 619 | or integer-values. |
||
| 620 | :param text_fontsize: Matplotlib-style fontsizes. |
||
| 621 | Use e.g. 'small', 'medium', 'large' |
||
| 622 | or integer-values. |
||
| 623 | :return: The axes on which the plot was drawn. |
||
| 624 | :rtype: :class:`matplotlib.axes.Axes` |
||
| 625 | |||
| 626 | """ |
||
| 627 | |||
| 628 | ax = plot_roc_curves(roc_curves, aucs, |
||
| 629 | title, ax, figsize, title_fontsize, text_fontsize) |
||
| 630 | |||
| 631 | MARKERS = ['o', '^', 'x', '+', 'p'] |
||
| 632 | |||
| 633 | for (name, data), marker in zip(thresholds_data.items(), MARKERS): |
||
| 634 | label = _titlify(name) |
||
| 635 | ax.scatter(*zip(*data[1].values()), |
||
| 636 | marker=marker, color='k', label=label, |
||
| 637 | zorder=float('inf')) |
||
| 638 | |||
| 639 | plt.legend() |
||
| 640 | |||
| 641 | return ax |
||
| 642 | |||
| 643 | |||
| 644 | def plot_fpt_tpr(roc_curves, |
||
| 645 | title='FPR-TPR Curves by Attribute', |
||
| 646 | ax=None, figsize=None, |
||
| 647 | title_fontsize='large', text_fontsize='medium'): |
||
| 648 | """Generate FPR and TPR curves by thresholds and by attribute. |
||
| 649 | |||
| 650 | Based on :func:`skplt.metrics.plot_roc` |
||
| 651 | |||
| 652 | :param roc_curves: Receiver operating characteristic (ROC) |
||
| 653 | by attribute. |
||
| 654 | :type roc_curves: dict |
||
| 655 | :param str title: Title of the generated plot. |
||
| 656 | :param ax: The axes upon which to plot the curve. |
||
| 657 | If `None`, the plot is drawn on a new set of axes. |
||
| 658 | :param tuple figsize: Tuple denoting figure size of the plot |
||
| 659 | e.g. (6, 6). |
||
| 660 | :param title_fontsize: Matplotlib-style fontsizes. |
||
| 661 | Use e.g. 'small', 'medium', 'large' |
||
| 662 | or integer-values. |
||
| 663 | :param text_fontsize: Matplotlib-style fontsizes. |
||
| 664 | Use e.g. 'small', 'medium', 'large' |
||
| 665 | or integer-values. |
||
| 666 | :return: The axes on which the plot was drawn. |
||
| 667 | :rtype: :class:`matplotlib.axes.Axes` |
||
| 668 | |||
| 669 | """ |
||
| 670 | |||
| 671 | if ax is None: |
||
| 672 | fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable |
||
| 673 | |||
| 674 | ax.set_title(title, fontsize=title_fontsize) |
||
| 675 | |||
| 676 | thresholds = _extract_threshold(roc_curves) |
||
| 677 | |||
| 678 | prop_cycle = plt.rcParams['axes.prop_cycle'] |
||
| 679 | colors = prop_cycle.by_key()['color'] |
||
| 680 | |||
| 681 | for (group, roc), color in zip(roc_curves.items(), colors): |
||
| 682 | plt.plot(thresholds, roc[0], '-', |
||
| 683 | label='{} - FPR'.format(group), color=color) |
||
| 684 | plt.plot(thresholds, roc[1], '--', |
||
| 685 | label='{} - TPR'.format(group), color=color) |
||
| 686 | plt.legend() |
||
| 687 | |||
| 688 | ax.set_ylim([0.0, 1.05]) |
||
| 689 | ax.set_xlabel('Threshold', fontsize=text_fontsize) |
||
| 690 | ax.set_ylabel('Probability', fontsize=text_fontsize) |
||
| 691 | ax.tick_params(labelsize=text_fontsize) |
||
| 692 | ax.legend(fontsize=text_fontsize) |
||
| 693 | |||
| 694 | return ax |
||
| 695 | |||
| 696 | |||
| 697 | def plot_costs(thresholds_data, |
||
| 698 | title='Cost by Threshold Strategy', |
||
| 699 | ax=None, figsize=None, |
||
| 700 | title_fontsize='large', text_fontsize='medium'): |
||
| 701 | """Plot cost by threshold definition and by attribute. |
||
| 702 | |||
| 703 | Based on :func:`skplt.metrics.plot_roc` |
||
| 704 | |||
| 705 | :param thresholds_data: Thresholds by attribute from the |
||
| 706 | function |
||
| 707 | :func:`~responsibly.interventions |
||
| 708 | .threshold.find_thresholds`. |
||
| 709 | :type thresholds_data: dict |
||
| 710 | :param str title: Title of the generated plot. |
||
| 711 | :param ax: The axes upon which to plot the curve. |
||
| 712 | If `None`, the plot is drawn on a new set of axes. |
||
| 713 | :param tuple figsize: Tuple denoting figure size of the plot |
||
| 714 | e.g. (6, 6). |
||
| 715 | :param title_fontsize: Matplotlib-style fontsizes. |
||
| 716 | Use e.g. 'small', 'medium', 'large' |
||
| 717 | or integer-values. |
||
| 718 | :param text_fontsize: Matplotlib-style fontsizes. |
||
| 719 | Use e.g. 'small', 'medium', 'large' |
||
| 720 | or integer-values. |
||
| 721 | :return: The axes on which the plot was drawn. |
||
| 722 | :rtype: :class:`matplotlib.axes.Axes` |
||
| 723 | """ |
||
| 724 | |||
| 725 | if ax is None: |
||
| 726 | fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable |
||
| 727 | |||
| 728 | ax.set_title(title, fontsize=title_fontsize) |
||
| 729 | |||
| 730 | costs = {_titlify(group): cost |
||
| 731 | for group, (_, _, cost, *_) in thresholds_data.items()} |
||
| 732 | |||
| 733 | (pd.Series(costs) |
||
| 734 | .sort_values(ascending=False) |
||
| 735 | .plot(kind='barh', ax=ax)) |
||
| 736 | |||
| 737 | ax.set_xlabel('Cost', fontsize=text_fontsize) |
||
| 738 | ax.set_ylabel('Threshold', fontsize=text_fontsize) |
||
| 739 | ax.tick_params(labelsize=text_fontsize) |
||
| 740 | |||
| 741 | return ax |
||
| 742 | |||
| 743 | |||
| 744 | def plot_thresholds(thresholds_data, |
||
| 745 | markersize=7, |
||
| 746 | title='Thresholds by Strategy and Attribute', |
||
| 747 | xlim=None, |
||
| 748 | ax=None, figsize=None, |
||
| 749 | title_fontsize='large', text_fontsize='medium'): |
||
| 750 | """Plot thresholds by strategy and by attribute. |
||
| 751 | |||
| 752 | Based on :func:`skplt.metrics.plot_roc` |
||
| 753 | |||
| 754 | :param thresholds_data: Thresholds by attribute from the |
||
| 755 | function |
||
| 756 | :func:`~responsibly.interventions |
||
| 757 | .threshold.find_thresholds`. |
||
| 758 | :type thresholds_data: dict |
||
| 759 | :param int markersize: Marker size. |
||
| 760 | :param str title: Title of the generated plot. |
||
| 761 | :param tuple xlim: Set the data limits for the x-axis. |
||
| 762 | :param ax: The axes upon which to plot the curve. |
||
| 763 | If `None`, the plot is drawn on a new set of axes. |
||
| 764 | :param tuple figsize: Tuple denoting figure size of the plot |
||
| 765 | e.g. (6, 6). |
||
| 766 | :param title_fontsize: Matplotlib-style fontsizes. |
||
| 767 | Use e.g. 'small', 'medium', 'large' |
||
| 768 | or integer-values. |
||
| 769 | :param text_fontsize: Matplotlib-style fontsizes. |
||
| 770 | Use e.g. 'small', 'medium', 'large' |
||
| 771 | or integer-values. |
||
| 772 | :return: The axes on which the plot was drawn. |
||
| 773 | :rtype: :class:`matplotlib.axes.Axes` |
||
| 774 | """ |
||
| 775 | |||
| 776 | if ax is None: |
||
| 777 | fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable |
||
| 778 | |||
| 779 | ax.set_title(title, fontsize=title_fontsize) |
||
| 780 | |||
| 781 | # TODO: refactor! |
||
| 782 | df = pd.DataFrame({_titlify(key): thresholds |
||
| 783 | for key, (thresholds, *_) in thresholds_data.items() |
||
| 784 | if key != 'separation'}) |
||
| 785 | melted_df = pd.melt(df, var_name='Strategy', value_name='Threshold') |
||
| 786 | melted_df['Attribute'] = list(df.index) * len(df.columns) |
||
| 787 | |||
| 788 | sns.stripplot(y='Strategy', x='Threshold', hue='Attribute', data=melted_df, |
||
| 789 | jitter=False, dodge=True, size=markersize, ax=ax) |
||
| 790 | |||
| 791 | minor_locator = AutoMinorLocator(2) |
||
| 792 | fig.gca().yaxis.set_minor_locator(minor_locator) |
||
| 793 | ax.grid(which='minor') |
||
| 794 | |||
| 795 | if xlim is not None: |
||
| 796 | ax.set_xlim(*xlim) |
||
| 797 | |||
| 798 | ax.set_xlabel('Threshold', fontsize=text_fontsize) |
||
| 799 | ax.set_ylabel('Strategy', fontsize=text_fontsize) |
||
| 800 | ax.tick_params(labelsize=text_fontsize) |
||
| 801 | |||
| 802 | return ax |
||
| 803 |