| Total Complexity | 41 | 
| Total Lines | 619 | 
| Duplicated Lines | 18.9 % | 
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like ethically.fairness.interventions.threshold often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """  | 
            ||
| 2 | Post-processing fairness intervension by choosing thresholds.  | 
            ||
| 3 | |||
| 4 | There are multiple definitions for choosing the thresholds:  | 
            ||
| 5 | |||
| 6 | 1. Single threshold for all the sensitive attribute values  | 
            ||
| 7 | that minimizes cost.  | 
            ||
| 8 | 2. A threshold for each sensitive attribute value  | 
            ||
| 9 | that minimize cost.  | 
            ||
| 10 | 3. A threshold for each sensitive attribute value  | 
            ||
| 11 | that achieve independence and minimize cost.  | 
            ||
| 12 | 4. A threshold for each sensitive attribute value  | 
            ||
| 13 | that achieve equal FNR (equal opportunity) and minimize cost.  | 
            ||
| 14 | 5. A threshold for each sensitive attribute value  | 
            ||
| 15 | that achieve seperation (equalized odds) and minimize cost.  | 
            ||
| 16 | |||
| 17 | The code is based on `fairmlbook repository <https://github.com/fairmlbook/fairmlbook.github.io>`_.  | 
            ||
| 18 | |||
| 19 | References:  | 
            ||
| 20 | - Hardt, M., Price, E., & Srebro, N. (2016).  | 
            ||
| 21 | Equality of opportunity in supervised learning.  | 
            ||
| 22 | In Advances in neural information processing systems  | 
            ||
| 23 | (pp. 3315-3323).  | 
            ||
| 24 | - `Attacking discrimination with  | 
            ||
| 25 | smarter machine learning by Google  | 
            ||
| 26 | <https://research.google.com/bigpicture/attacking-discrimination-in-ml/>`_.  | 
            ||
| 27 | |||
| 28 | """  | 
            ||
| 29 | |||
| 30 | # pylint: disable=no-name-in-module  | 
            ||
| 31 | |||
| 32 | import matplotlib.pylab as plt  | 
            ||
| 33 | import numpy as np  | 
            ||
| 34 | import pandas as pd  | 
            ||
| 35 | from scipy.spatial import Delaunay  | 
            ||
| 36 | |||
| 37 | from ethically.fairness.metrics.visualization import plot_roc_curves  | 
            ||
| 38 | |||
| 39 | |||
| 40 | def _ternary_search_float(f, left, right, tol):  | 
            ||
| 41 | """Trinary search: minimize f(x) over [left, right], to within +/-tol in x.  | 
            ||
| 42 | |||
| 43 | Works assuming f is quasiconvex.  | 
            ||
| 44 | |||
| 45 | """  | 
            ||
| 46 | while right - left > tol:  | 
            ||
| 47 | left_third = (2 * left + right) / 3  | 
            ||
| 48 | right_third = (left + 2 * right) / 3  | 
            ||
| 49 | if f(left_third) < f(right_third):  | 
            ||
| 50 | right = right_third  | 
            ||
| 51 | else:  | 
            ||
| 52 | left = left_third  | 
            ||
| 53 | return (right + left) / 2  | 
            ||
| 54 | |||
| 55 | |||
| 56 | def _ternary_search_domain(f, domain):  | 
            ||
| 57 | """Trinary search: minimize f(x) over a domain (sequence).  | 
            ||
| 58 | |||
| 59 | Works assuming f is quasiconvex and domain is ascending sorted.  | 
            ||
| 60 | |||
| 61 | """  | 
            ||
| 62 | left = 0  | 
            ||
| 63 | right = len(domain) - 1  | 
            ||
| 64 | changed = True  | 
            ||
| 65 | |||
| 66 | while changed and left != right:  | 
            ||
| 67 | |||
| 68 | changed = False  | 
            ||
| 69 | |||
| 70 | left_third = (2 * left + right) // 3  | 
            ||
| 71 | right_third = (left + 2 * right) // 3  | 
            ||
| 72 | |||
| 73 | if f(domain[left_third]) < f(domain[right_third]):  | 
            ||
| 74 | right = right_third - 1  | 
            ||
| 75 | changed = True  | 
            ||
| 76 | else:  | 
            ||
| 77 | left = left_third + 1  | 
            ||
| 78 | changed = True  | 
            ||
| 79 | |||
| 80 | return domain[(left + right) // 2]  | 
            ||
| 81 | |||
| 82 | |||
| 83 | def _cost_function(fpr, tpr, base_rate, cost_matrix):  | 
            ||
| 84 | """Compute the cost of given (fpr, tpr).  | 
            ||
| 85 | |||
| 86 | [[tn, fp], [fn, tp]]  | 
            ||
| 87 | """  | 
            ||
| 88 | |||
| 89 | fp = fpr * (1 - base_rate)  | 
            ||
| 90 | tn = (1 - base_rate) - fp  | 
            ||
| 91 | tp = tpr * base_rate  | 
            ||
| 92 | fn = base_rate - tp  | 
            ||
| 93 | |||
| 94 | conf_matrix = np.array([tn, fp, fn, tp])  | 
            ||
| 95 | |||
| 96 | return (conf_matrix * np.array(cost_matrix).ravel()).sum()  | 
            ||
| 97 | |||
| 98 | |||
| 99 | def _extract_threshold(roc_curves):  | 
            ||
| 100 | return next(iter(roc_curves.values()))[2]  | 
            ||
| 101 | |||
| 102 | |||
| 103 | def _first_index_above(array, value):  | 
            ||
| 104 | """Find the smallest index i for which array[i] > value.  | 
            ||
| 105 | |||
| 106 | If no such value exists, return len(array).  | 
            ||
| 107 | """  | 
            ||
| 108 | array = np.array(array)  | 
            ||
| 109 | v = np.concatenate([array > value, np.ones_like(array[-1:])])  | 
            ||
| 110 | return np.argmax(v, axis=0)  | 
            ||
| 111 | |||
| 112 | |||
| 113 | def _calc_acceptance_rate(fpr, tpr, base_rate):  | 
            ||
| 114 | return 1 - ((fpr * (1 - base_rate)  | 
            ||
| 115 | + tpr * base_rate))  | 
            ||
| 116 | |||
| 117 | |||
| 118 | def find_single_threshold(roc_curves, base_rates, proportions,  | 
            ||
| 119 | cost_matrix):  | 
            ||
| 120 | """Compute single threshold that minimizes cost.  | 
            ||
| 121 | |||
| 122 | :param roc_curves: Receiver operating characteristic (ROC)  | 
            ||
| 123 | by attribute.  | 
            ||
| 124 | :type roc_curves: dict  | 
            ||
| 125 | :param base_rates: Base rate by attribute.  | 
            ||
| 126 | :type base_rates: dict  | 
            ||
| 127 | :param proportions: Proportion of each attribute value.  | 
            ||
| 128 | :type proportions: dict  | 
            ||
| 129 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]].  | 
            ||
| 130 | :type cost_matrix: sequence  | 
            ||
| 131 | :return: Threshold, FPR and TPR by attribute and cost value.  | 
            ||
| 132 | :rtype: tuple  | 
            ||
| 133 | |||
| 134 | """  | 
            ||
| 135 | |||
| 136 | def total_cost_function(index):  | 
            ||
| 137 | total_cost = 0  | 
            ||
| 138 | |||
| 139 | for group, roc in roc_curves.items():  | 
            ||
| 140 | fpr = roc[0][index]  | 
            ||
| 141 | tpr = roc[1][index]  | 
            ||
| 142 | |||
| 143 | group_cost = _cost_function(fpr, tpr,  | 
            ||
| 144 | base_rates[group], cost_matrix)  | 
            ||
| 145 | group_cost *= proportions[group]  | 
            ||
| 146 | |||
| 147 | total_cost += group_cost  | 
            ||
| 148 | |||
| 149 | return -total_cost  | 
            ||
| 150 | |||
| 151 | thresholds = _extract_threshold(roc_curves)  | 
            ||
| 152 | |||
| 153 | cutoff_index = _ternary_search_domain(total_cost_function,  | 
            ||
| 154 | range(len(thresholds)))  | 
            ||
| 155 | |||
| 156 |     fpr_tpr = {group: (roc[0][cutoff_index], roc[1][cutoff_index]) | 
            ||
| 157 | for group, roc in roc_curves.items()}  | 
            ||
| 158 | |||
| 159 | cost = total_cost_function(cutoff_index)  | 
            ||
| 160 | |||
| 161 | return thresholds[cutoff_index], fpr_tpr, cost  | 
            ||
| 162 | |||
| 163 | |||
| 164 | def find_min_cost_thresholds(roc_curves, base_rates, cost_matrix):  | 
            ||
| 165 | """Compute thresholds by attribute values that minimize cost.  | 
            ||
| 166 | |||
| 167 | :param roc_curves: Receiver operating characteristic (ROC)  | 
            ||
| 168 | by attribute.  | 
            ||
| 169 | :type roc_curves: dict  | 
            ||
| 170 | :param base_rates: Base rate by attribute.  | 
            ||
| 171 | :type base_rates: dict  | 
            ||
| 172 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]].  | 
            ||
| 173 | :type cost_matrix: sequence  | 
            ||
| 174 | :return: Thresholds, FPR and TPR by attribute and cost value.  | 
            ||
| 175 | :rtype: tuple  | 
            ||
| 176 | |||
| 177 | """  | 
            ||
| 178 | # pylint: disable=cell-var-from-loop  | 
            ||
| 179 | |||
| 180 |     cutoffs = {} | 
            ||
| 181 |     fpr_tpr = {} | 
            ||
| 182 | |||
| 183 | cost = 0  | 
            ||
| 184 | thresholds = _extract_threshold(roc_curves)  | 
            ||
| 185 | |||
| 186 | for group, roc in roc_curves.items():  | 
            ||
| 187 | def group_cost_function(index):  | 
            ||
| 188 | fpr = roc[0][index]  | 
            ||
| 189 | tpr = roc[1][index]  | 
            ||
| 190 | return -_cost_function(fpr, tpr,  | 
            ||
| 191 | base_rates[group], cost_matrix)  | 
            ||
| 192 | |||
| 193 | threshold_index = _ternary_search_domain(group_cost_function,  | 
            ||
| 194 | range(len(thresholds)))  | 
            ||
| 195 | |||
| 196 | cutoffs[group] = thresholds[threshold_index]  | 
            ||
| 197 | |||
| 198 | fpr_tpr[group] = (roc[0][threshold_index],  | 
            ||
| 199 | roc[1][threshold_index])  | 
            ||
| 200 | |||
| 201 | cost += group_cost_function(threshold_index)  | 
            ||
| 202 | |||
| 203 | return cutoffs, fpr_tpr, cost  | 
            ||
| 204 | |||
| 205 | |||
| 206 | def get_acceptance_rate_indices(roc_curves, base_rates,  | 
            ||
| 207 | acceptance_rate_value):  | 
            ||
| 208 |     indices = {} | 
            ||
| 209 | for group, roc in roc_curves.items():  | 
            ||
| 210 | # can be calculated outside the function  | 
            ||
| 211 | acceptance_rates = _calc_acceptance_rate(fpr=roc[0],  | 
            ||
| 212 | tpr=roc[1],  | 
            ||
| 213 | base_rate=base_rates[group])  | 
            ||
| 214 | |||
| 215 | index = _first_index_above(acceptance_rates,  | 
            ||
| 216 | (1 - acceptance_rate_value)) - 2  | 
            ||
| 217 | |||
| 218 | indices[group] = index  | 
            ||
| 219 | |||
| 220 | return indices  | 
            ||
| 221 | |||
| 222 | |||
| 223 | View Code Duplication | def find_independence_thresholds(roc_curves, base_rates, proportions,  | 
            |
| 224 | cost_matrix):  | 
            ||
| 225 | """Compute thresholds that achieve independence and minimize cost.  | 
            ||
| 226 | |||
| 227 | :param roc_curves: Receiver operating characteristic (ROC)  | 
            ||
| 228 | by attribute.  | 
            ||
| 229 | :type roc_curves: dict  | 
            ||
| 230 | :param base_rates: Base rate by attribute.  | 
            ||
| 231 | :type base_rates: dict  | 
            ||
| 232 | :param proportions: Proportion of each attribute value.  | 
            ||
| 233 | :type proportions: dict  | 
            ||
| 234 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]].  | 
            ||
| 235 | :type cost_matrix: sequence  | 
            ||
| 236 | :return: Thresholds, FPR and TPR by attribute and cost value.  | 
            ||
| 237 | :rtype: tuple  | 
            ||
| 238 | |||
| 239 | """  | 
            ||
| 240 | |||
| 241 |     cutoffs = {} | 
            ||
| 242 | |||
| 243 | def total_cost_function(acceptance_rate_value):  | 
            ||
| 244 | # todo: move demo here + multiple cost  | 
            ||
| 245 | indices = get_acceptance_rate_indices(roc_curves, base_rates,  | 
            ||
| 246 | acceptance_rate_value)  | 
            ||
| 247 | |||
| 248 | total_cost = 0  | 
            ||
| 249 | |||
| 250 | for group, roc in roc_curves.items():  | 
            ||
| 251 | index = indices[group]  | 
            ||
| 252 | |||
| 253 | fpr = roc[0][index]  | 
            ||
| 254 | tpr = roc[1][index]  | 
            ||
| 255 | |||
| 256 | group_cost = _cost_function(fpr, tpr,  | 
            ||
| 257 | base_rates[group],  | 
            ||
| 258 | cost_matrix)  | 
            ||
| 259 | group_cost *= proportions[group]  | 
            ||
| 260 | |||
| 261 | total_cost += group_cost  | 
            ||
| 262 | |||
| 263 | return -total_cost  | 
            ||
| 264 | |||
| 265 | acceptance_rate_min_cost = _ternary_search_float(total_cost_function,  | 
            ||
| 266 | 0, 1, 1e-3)  | 
            ||
| 267 | threshold_indices = get_acceptance_rate_indices(roc_curves, base_rates,  | 
            ||
| 268 | acceptance_rate_min_cost)  | 
            ||
| 269 | |||
| 270 | thresholds = _extract_threshold(roc_curves)  | 
            ||
| 271 | |||
| 272 |     cutoffs = {group: thresholds[threshold_index] | 
            ||
| 273 | for group, threshold_index  | 
            ||
| 274 | in threshold_indices.items()}  | 
            ||
| 275 | |||
| 276 |     fpr_tpr = {group: (roc[0][threshold_indices[group]], | 
            ||
| 277 | roc[1][threshold_indices[group]])  | 
            ||
| 278 | for group, roc in roc_curves.items()}  | 
            ||
| 279 | |||
| 280 | return cutoffs, fpr_tpr, acceptance_rate_min_cost  | 
            ||
| 281 | |||
| 282 | |||
| 283 | def get_fnr_indices(roc_curves, fnr_value):  | 
            ||
| 284 |     indices = {} | 
            ||
| 285 | for group, roc in roc_curves.items():  | 
            ||
| 286 | tprs = roc[1]  | 
            ||
| 287 | index = _first_index_above(1 - tprs,  | 
            ||
| 288 | (1 - fnr_value)) - 1  | 
            ||
| 289 | |||
| 290 | indices[group] = index  | 
            ||
| 291 | |||
| 292 | return indices  | 
            ||
| 293 | |||
| 294 | |||
| 295 | View Code Duplication | def find_fnr_thresholds(roc_curves, base_rates, proportions,  | 
            |
| 
                                                                                                    
                        
                         | 
                |||
| 296 | cost_matrix):  | 
            ||
| 297 | """Compute thresholds that achieve equal FNRs and minimize cost.  | 
            ||
| 298 | |||
| 299 | Also known as **equal opportunity**.  | 
            ||
| 300 | |||
| 301 | :param roc_curves: Receiver operating characteristic (ROC)  | 
            ||
| 302 | by attribute.  | 
            ||
| 303 | :type roc_curves: dict  | 
            ||
| 304 | :param base_rates: Base rate by attribute.  | 
            ||
| 305 | :type base_rates: dict  | 
            ||
| 306 | :param proportions: Proportion of each attribute value.  | 
            ||
| 307 | :type proportions: dict  | 
            ||
| 308 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]].  | 
            ||
| 309 | :type cost_matrix: sequence  | 
            ||
| 310 | :return: Thresholds, FPR and TPR by attribute and cost value.  | 
            ||
| 311 | :rtype: tuple  | 
            ||
| 312 | |||
| 313 | """  | 
            ||
| 314 | |||
| 315 |     cutoffs = {} | 
            ||
| 316 | |||
| 317 | def total_cost_function(fnr_value):  | 
            ||
| 318 | # todo: move demo here + multiple cost  | 
            ||
| 319 | indices = get_fnr_indices(roc_curves, fnr_value)  | 
            ||
| 320 | |||
| 321 | total_cost = 0  | 
            ||
| 322 | |||
| 323 | for group, roc in roc_curves.items():  | 
            ||
| 324 | index = indices[group]  | 
            ||
| 325 | |||
| 326 | fpr = roc[0][index]  | 
            ||
| 327 | tpr = roc[1][index]  | 
            ||
| 328 | |||
| 329 | group_cost = _cost_function(fpr, tpr,  | 
            ||
| 330 | base_rates[group],  | 
            ||
| 331 | cost_matrix)  | 
            ||
| 332 | group_cost *= proportions[group]  | 
            ||
| 333 | |||
| 334 | total_cost += group_cost  | 
            ||
| 335 | |||
| 336 | return -total_cost  | 
            ||
| 337 | |||
| 338 | fnr_value_min_cost = _ternary_search_float(total_cost_function,  | 
            ||
| 339 | 0, 1, 1e-3)  | 
            ||
| 340 | threshold_indices = get_fnr_indices(roc_curves, fnr_value_min_cost)  | 
            ||
| 341 | |||
| 342 | cost = total_cost_function(fnr_value_min_cost)  | 
            ||
| 343 | |||
| 344 |     fpr_tpr = {group: (roc[0][threshold_indices[group]], | 
            ||
| 345 | roc[1][threshold_indices[group]])  | 
            ||
| 346 | for group, roc in roc_curves.items()}  | 
            ||
| 347 | |||
| 348 | thresholds = _extract_threshold(roc_curves)  | 
            ||
| 349 |     cutoffs = {group: thresholds[threshold_index] | 
            ||
| 350 | for group, threshold_index  | 
            ||
| 351 | in threshold_indices.items()}  | 
            ||
| 352 | |||
| 353 | return cutoffs, fpr_tpr, cost, fnr_value_min_cost  | 
            ||
| 354 | |||
| 355 | |||
| 356 | def _find_feasible_roc(roc_curves):  | 
            ||
| 357 | polygons = [Delaunay(list(zip(fprs, tprs)))  | 
            ||
| 358 | for group, (fprs, tprs, _) in roc_curves.items()]  | 
            ||
| 359 | |||
| 360 | feasible_points = []  | 
            ||
| 361 | |||
| 362 | for poly in polygons:  | 
            ||
| 363 | for p in poly.points:  | 
            ||
| 364 | |||
| 365 | if all(poly2.find_simplex(p) != -1 for poly2 in polygons):  | 
            ||
| 366 | feasible_points.append(p)  | 
            ||
| 367 | |||
| 368 | return np.array(feasible_points)  | 
            ||
| 369 | |||
| 370 | |||
| 371 | def find_separation_thresholds(roc_curves, base_rate, cost_matrix):  | 
            ||
| 372 | """Compute thresholds that achieve separation and minimize cost.  | 
            ||
| 373 | |||
| 374 | Also known as **equalized odds**.  | 
            ||
| 375 | |||
| 376 | :param roc_curves: Receiver operating characteristic (ROC)  | 
            ||
| 377 | by attribute.  | 
            ||
| 378 | :type roc_curves: dict  | 
            ||
| 379 | :param base_rate: Overall base rate.  | 
            ||
| 380 | :type base_rate: float  | 
            ||
| 381 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]].  | 
            ||
| 382 | :type cost_matrix: sequence  | 
            ||
| 383 | :return: Thresholds, FPR and TPR by attribute and cost value.  | 
            ||
| 384 | :rtype: tuple  | 
            ||
| 385 | |||
| 386 | """  | 
            ||
| 387 | |||
| 388 | feasible_points = _find_feasible_roc(roc_curves)  | 
            ||
| 389 | |||
| 390 | cost, (best_fpr, best_tpr) = max((_cost_function(fpr, tpr, base_rate,  | 
            ||
| 391 | cost_matrix),  | 
            ||
| 392 | (fpr, tpr))  | 
            ||
| 393 | for fpr, tpr in feasible_points)  | 
            ||
| 394 | |||
| 395 |     return {}, {'': (best_fpr, best_tpr)}, cost | 
            ||
| 396 | |||
| 397 | |||
| 398 | def find_thresholds(roc_curves, proportions, base_rate,  | 
            ||
| 399 | base_rates, cost_matrix,  | 
            ||
| 400 | with_single=True, with_min_cost=True,  | 
            ||
| 401 | with_independence=True, with_fnr=True,  | 
            ||
| 402 | with_separation=True):  | 
            ||
| 403 | """Compute thresholds that achieve various criteria and minimize cost.  | 
            ||
| 404 | |||
| 405 | :param roc_curves: Receiver operating characteristic (ROC)  | 
            ||
| 406 | by attribute.  | 
            ||
| 407 | :type roc_curves: dict  | 
            ||
| 408 | :param proportions: Proportion of each attribute value.  | 
            ||
| 409 | :type proportions: dict  | 
            ||
| 410 | :param base_rate: Overall base rate.  | 
            ||
| 411 | :type base_rate: float  | 
            ||
| 412 | :param base_rates: Base rate by attribute.  | 
            ||
| 413 | :type base_rates: dict  | 
            ||
| 414 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]].  | 
            ||
| 415 | :type cost_matrix: sequence  | 
            ||
| 416 | |||
| 417 | :param with_single: Compute single threshold.  | 
            ||
| 418 | :type with_single: bool  | 
            ||
| 419 | :param with_min_cost: Compute minimum cost thresholds.  | 
            ||
| 420 | :type with_min_cost: bool  | 
            ||
| 421 | :param with_independence: Compute independence thresholds.  | 
            ||
| 422 | :type with_independence: bool  | 
            ||
| 423 | :param with_fnr: Compute FNR thresholds.  | 
            ||
| 424 | :type with_fnr: bool  | 
            ||
| 425 | :param with_separation: Compute separation thresholds.  | 
            ||
| 426 | :type with_separation: bool  | 
            ||
| 427 | |||
| 428 | :return: Dictionary of threshold criteria,  | 
            ||
| 429 | and for each criterion:  | 
            ||
| 430 | thresholds, FPR and TPR by attribute and cost value.  | 
            ||
| 431 | :rtype: dict  | 
            ||
| 432 | |||
| 433 | """  | 
            ||
| 434 | |||
| 435 |     thresholds = {} | 
            ||
| 436 | |||
| 437 | if with_single:  | 
            ||
| 438 | thresholds['single'] = find_single_threshold(roc_curves,  | 
            ||
| 439 | base_rates,  | 
            ||
| 440 | proportions,  | 
            ||
| 441 | cost_matrix)  | 
            ||
| 442 | |||
| 443 | if with_min_cost:  | 
            ||
| 444 | thresholds['min_cost'] = find_min_cost_thresholds(roc_curves,  | 
            ||
| 445 | base_rates,  | 
            ||
| 446 | cost_matrix)  | 
            ||
| 447 | |||
| 448 | if with_independence:  | 
            ||
| 449 | thresholds['independence'] = find_independence_thresholds(roc_curves,  | 
            ||
| 450 | base_rates,  | 
            ||
| 451 | proportions,  | 
            ||
| 452 | cost_matrix)  | 
            ||
| 453 | |||
| 454 | if with_fnr:  | 
            ||
| 455 | thresholds['fnr'] = find_fnr_thresholds(roc_curves,  | 
            ||
| 456 | base_rates,  | 
            ||
| 457 | proportions,  | 
            ||
| 458 | cost_matrix)  | 
            ||
| 459 | |||
| 460 | if with_separation:  | 
            ||
| 461 | thresholds['separation'] = find_separation_thresholds(roc_curves,  | 
            ||
| 462 | base_rate,  | 
            ||
| 463 | cost_matrix)  | 
            ||
| 464 | |||
| 465 | return thresholds  | 
            ||
| 466 | |||
| 467 | |||
| 468 | def plot_roc_curves_thresholds(roc_curves, thresholds_data,  | 
            ||
| 469 | aucs=None,  | 
            ||
| 470 | title='ROC Curves by Attribute',  | 
            ||
| 471 | ax=None, figsize=None,  | 
            ||
| 472 | title_fontsize='large',  | 
            ||
| 473 | text_fontsize='medium'):  | 
            ||
| 474 | """Generate the ROC curves by attribute with thresholds.  | 
            ||
| 475 | |||
| 476 | Based on :func:`skplt.metrics.plot_roc`  | 
            ||
| 477 | |||
| 478 | :param roc_curves: Receiver operating characteristic (ROC)  | 
            ||
| 479 | by attribute.  | 
            ||
| 480 | :type roc_curves: dict  | 
            ||
| 481 | :param thresholds_data: Thresholds by attribute from the  | 
            ||
| 482 | function  | 
            ||
| 483 | :func:`~ethically.interventions  | 
            ||
| 484 | .threshold.find_thresholds`.  | 
            ||
| 485 | :type thresholds_data: dict  | 
            ||
| 486 | :param aucs: Area Under the ROC (AUC) by attribute.  | 
            ||
| 487 | :type aucs: dict  | 
            ||
| 488 | :param str title: Title of the generated plot.  | 
            ||
| 489 | :param ax: The axes upon which to plot the curve.  | 
            ||
| 490 | If `None`, the plot is drawn on a new set of axes.  | 
            ||
| 491 | :param tuple figsize: Tuple denoting figure size of the plot  | 
            ||
| 492 | e.g. (6, 6).  | 
            ||
| 493 | :param title_fontsize: Matplotlib-style fontsizes.  | 
            ||
| 494 | Use e.g. 'small', 'medium', 'large'  | 
            ||
| 495 | or integer-values.  | 
            ||
| 496 | :param text_fontsize: Matplotlib-style fontsizes.  | 
            ||
| 497 | Use e.g. 'small', 'medium', 'large'  | 
            ||
| 498 | or integer-values.  | 
            ||
| 499 | :return: The axes on which the plot was drawn.  | 
            ||
| 500 | :rtype: :class:`matplotlib.axes.Axes`  | 
            ||
| 501 | |||
| 502 | """  | 
            ||
| 503 | |||
| 504 | ax = plot_roc_curves(roc_curves, aucs,  | 
            ||
| 505 | title, ax, figsize, title_fontsize, text_fontsize)  | 
            ||
| 506 | |||
| 507 | MARKERS = ['o', '^', 'x', '+', 'p']  | 
            ||
| 508 | |||
| 509 | for (name, data), marker in zip(thresholds_data.items(), MARKERS):  | 
            ||
| 510 |         label = name.replace('_', ' ').title() | 
            ||
| 511 | ax.scatter(*zip(*data[1].values()),  | 
            ||
| 512 | marker=marker, color='k', label=label,  | 
            ||
| 513 |                    zorder=float('inf')) | 
            ||
| 514 | |||
| 515 | plt.legend()  | 
            ||
| 516 | |||
| 517 | return ax  | 
            ||
| 518 | |||
| 519 | |||
| 520 | def plot_fpt_tpr(roc_curves,  | 
            ||
| 521 | title='FPR-TPR Curves by Attribute',  | 
            ||
| 522 | ax=None, figsize=None,  | 
            ||
| 523 | title_fontsize='large', text_fontsize='medium'):  | 
            ||
| 524 | """Generate FPR and TPR curves by thresholds and by attribute.  | 
            ||
| 525 | |||
| 526 | Based on :func:`skplt.metrics.plot_roc`  | 
            ||
| 527 | |||
| 528 | :param roc_curves: Receiver operating characteristic (ROC)  | 
            ||
| 529 | by attribute.  | 
            ||
| 530 | :type roc_curves: dict  | 
            ||
| 531 | :param str title: Title of the generated plot.  | 
            ||
| 532 | :param ax: The axes upon which to plot the curve.  | 
            ||
| 533 | If `None`, the plot is drawn on a new set of axes.  | 
            ||
| 534 | :param tuple figsize: Tuple denoting figure size of the plot  | 
            ||
| 535 | e.g. (6, 6).  | 
            ||
| 536 | :param title_fontsize: Matplotlib-style fontsizes.  | 
            ||
| 537 | Use e.g. 'small', 'medium', 'large'  | 
            ||
| 538 | or integer-values.  | 
            ||
| 539 | :param text_fontsize: Matplotlib-style fontsizes.  | 
            ||
| 540 | Use e.g. 'small', 'medium', 'large'  | 
            ||
| 541 | or integer-values.  | 
            ||
| 542 | :return: The axes on which the plot was drawn.  | 
            ||
| 543 | :rtype: :class:`matplotlib.axes.Axes`  | 
            ||
| 544 | |||
| 545 | """  | 
            ||
| 546 | |||
| 547 | if ax is None:  | 
            ||
| 548 | fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable  | 
            ||
| 549 | |||
| 550 | ax.set_title(title, fontsize=title_fontsize)  | 
            ||
| 551 | |||
| 552 | thresholds = _extract_threshold(roc_curves)  | 
            ||
| 553 | |||
| 554 | prop_cycle = plt.rcParams['axes.prop_cycle']  | 
            ||
| 555 | colors = prop_cycle.by_key()['color']  | 
            ||
| 556 | |||
| 557 | for (group, roc), color in zip(roc_curves.items(), colors):  | 
            ||
| 558 | plt.plot(thresholds, roc[0], '-',  | 
            ||
| 559 |                  label='{} - FPR'.format(group), color=color) | 
            ||
| 560 | plt.plot(thresholds, roc[1], '--',  | 
            ||
| 561 |                  label='{} - TPR'.format(group), color=color) | 
            ||
| 562 | plt.legend()  | 
            ||
| 563 | |||
| 564 | ax.set_ylim([0.0, 1.05])  | 
            ||
| 565 |     ax.set_xlabel('Threshold', fontsize=text_fontsize) | 
            ||
| 566 |     ax.set_ylabel('Probability', fontsize=text_fontsize) | 
            ||
| 567 | ax.tick_params(labelsize=text_fontsize)  | 
            ||
| 568 | ax.legend(fontsize=text_fontsize)  | 
            ||
| 569 | |||
| 570 | return ax  | 
            ||
| 571 | |||
| 572 | |||
| 573 | def plot_costs(thresholds_data,  | 
            ||
| 574 | title='Cost by Threshold',  | 
            ||
| 575 | ax=None, figsize=None,  | 
            ||
| 576 | title_fontsize='large', text_fontsize='medium'):  | 
            ||
| 577 | """Plot cost by threshold definition and by attribute.  | 
            ||
| 578 | |||
| 579 | Based on :func:`skplt.metrics.plot_roc`  | 
            ||
| 580 | |||
| 581 | :param thresholds_data: Thresholds by attribute from the  | 
            ||
| 582 | function  | 
            ||
| 583 | :func:`~ethically.interventions  | 
            ||
| 584 | .threshold.find_thresholds`.  | 
            ||
| 585 | :type thresholds_data: dict  | 
            ||
| 586 | :param str title: Title of the generated plot.  | 
            ||
| 587 | :param ax: The axes upon which to plot the curve.  | 
            ||
| 588 | If `None`, the plot is drawn on a new set of axes.  | 
            ||
| 589 | :param tuple figsize: Tuple denoting figure size of the plot  | 
            ||
| 590 | e.g. (6, 6).  | 
            ||
| 591 | :param title_fontsize: Matplotlib-style fontsizes.  | 
            ||
| 592 | Use e.g. 'small', 'medium', 'large'  | 
            ||
| 593 | or integer-values.  | 
            ||
| 594 | :param text_fontsize: Matplotlib-style fontsizes.  | 
            ||
| 595 | Use e.g. 'small', 'medium', 'large'  | 
            ||
| 596 | or integer-values.  | 
            ||
| 597 | :return: The axes on which the plot was drawn.  | 
            ||
| 598 | :rtype: :class:`matplotlib.axes.Axes`  | 
            ||
| 599 | |||
| 600 | """  | 
            ||
| 601 | |||
| 602 | if ax is None:  | 
            ||
| 603 | fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable  | 
            ||
| 604 | |||
| 605 | ax.set_title(title, fontsize=title_fontsize)  | 
            ||
| 606 | |||
| 607 |     costs = {group.replace('_', ' ').title(): cost | 
            ||
| 608 | for group, (_, _, cost, *_) in thresholds_data.items()}  | 
            ||
| 609 | |||
| 610 | (pd.Series(costs)  | 
            ||
| 611 | .sort_values(ascending=False)  | 
            ||
| 612 | .plot(kind='barh', ax=ax))  | 
            ||
| 613 | |||
| 614 |     ax.set_xlabel('Cost', fontsize=text_fontsize) | 
            ||
| 615 |     ax.set_ylabel('Threshold', fontsize=text_fontsize) | 
            ||
| 616 | ax.tick_params(labelsize=text_fontsize)  | 
            ||
| 617 | |||
| 618 | return ax  | 
            ||
| 619 |