| 1 |  |  | # pylint: skip-file | 
            
                                                        
            
                                    
            
            
                | 2 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 3 |  |  | import json | 
            
                                                        
            
                                    
            
            
                | 4 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 5 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 6 |  |  | TEXT = '''WEAT_DATA 1: We use the flower and insect target words along with pleasant and unpleasant attributes | 
            
                                                        
            
                                    
            
            
                | 7 |  |  | found in (5). | 
            
                                                        
            
                                    
            
            
                | 8 |  |  | • Flowers: aster, clover, hyacinth, marigold, poppy, azalea, crocus, iris, orchid, rose, bluebell, | 
            
                                                        
            
                                    
            
            
                | 9 |  |  | daffodil, lilac, pansy, tulip, buttercup, daisy, lily, peony, violet, carnation, gladiola, | 
            
                                                        
            
                                    
            
            
                | 10 |  |  | magnolia, petunia, zinnia. | 
            
                                                        
            
                                    
            
            
                | 11 |  |  | • Insects: ant, caterpillar, flea, locust, spider, bedbug, centipede, fly, maggot, tarantula, | 
            
                                                        
            
                                    
            
            
                | 12 |  |  | bee, cockroach, gnat, mosquito, termite, beetle, cricket, hornet, moth, wasp, blackfly, | 
            
                                                        
            
                                    
            
            
                | 13 |  |  | dragonfly, horsefly, roach, weevil. | 
            
                                                        
            
                                    
            
            
                | 14 |  |  | • Pleasant: caress, freedom, health, love, peace, cheer, friend, heaven, loyal, pleasure, diamond, | 
            
                                                        
            
                                    
            
            
                | 15 |  |  | gentle, honest, lucky, rainbow, diploma, gift, honor, miracle, sunrise, family, | 
            
                                                        
            
                                    
            
            
                | 16 |  |  | happy, laughter, paradise, vacation. | 
            
                                                        
            
                                    
            
            
                | 17 |  |  | • Unpleasant: abuse, crash, filth, murder, sickness, accident, death, grief, poison, stink, | 
            
                                                        
            
                                    
            
            
                | 18 |  |  | assault, disaster, hatred, pollute, tragedy, divorce, jail, poverty, ugly, cancer, kill, rotten, | 
            
                                                        
            
                                    
            
            
                | 19 |  |  | vomit, agony, prison. | 
            
                                                        
            
                                    
            
            
                | 20 |  |  | WEAT_DATA 2: We use the musical instruments and weapons target words along with pleasant and | 
            
                                                        
            
                                    
            
            
                | 21 |  |  | unpleasant attributes found in (5). | 
            
                                                        
            
                                    
            
            
                | 22 |  |  | • Instruments: bagpipe, cello, guitar, lute, trombone, banjo, clarinet, harmonica, mandolin, | 
            
                                                        
            
                                    
            
            
                | 23 |  |  | trumpet, bassoon, drum, harp, oboe, tuba, bell, fiddle, harpsichord, piano, viola, bongo, | 
            
                                                        
            
                                    
            
            
                | 24 |  |  | flute, horn, saxophone, violin. | 
            
                                                        
            
                                    
            
            
                | 25 |  |  | • Weapons: arrow, club, gun, missile, spear, axe, dagger, harpoon, pistol, sword, blade, | 
            
                                                        
            
                                    
            
            
                | 26 |  |  | dynamite, hatchet, rifle, tank, bomb, firearm, knife, shotgun, teargas, cannon, grenade, | 
            
                                                        
            
                                    
            
            
                | 27 |  |  | mace, slingshot, whip. | 
            
                                                        
            
                                    
            
            
                | 28 |  |  | • Pleasant: As per previous experiment with insects and flowers. | 
            
                                                        
            
                                    
            
            
                | 29 |  |  | • Unpleasant: As per previous experiment with insects and flowers. | 
            
                                                        
            
                                    
            
            
                | 30 |  |  | WEAT_DATA 3: We use the European American and African American names along with pleasant | 
            
                                                        
            
                                    
            
            
                | 31 |  |  | and unpleasant attributes found in (5). Names that are marked with italics are excluded from | 
            
                                                        
            
                                    
            
            
                | 32 |  |  | our replication. In the case of African American names this was due to being to infrequent to | 
            
                                                        
            
                                    
            
            
                | 33 |  |  | occur in GloVe’s Common Crawl corpus; in the case of European American names an equal | 
            
                                                        
            
                                    
            
            
                | 34 |  |  | number were deleted, chosen at random. | 
            
                                                        
            
                                    
            
            
                | 35 |  |  | • European American names: Adam, Chip, Harry, Josh, Roger, Alan, Frank, Ian, Justin, | 
            
                                                        
            
                                    
            
            
                | 36 |  |  | Ryan, Andrew, Fred, Jack, Matthew, Stephen, Brad, Greg, Jed, Paul, Todd, Brandon, | 
            
                                                        
            
                                    
            
            
                | 37 |  |  | Hank, Jonathan, Peter, Wilbur, Amanda, Courtney, Heather, Melanie, Sara, Amber, Crystal, | 
            
                                                        
            
                                    
            
            
                | 38 |  |  | Katie, Meredith, Shannon, Betsy, Donna, Kristin, Nancy, Stephanie, Bobbie-Sue, | 
            
                                                        
            
                                    
            
            
                | 39 |  |  | Ellen, Lauren, Peggy, Sue-Ellen, Colleen, Emily, Megan, Rachel, Wendy. | 
            
                                                        
            
                                    
            
            
                | 40 |  |  | • African American names: Alonzo, Jamel, Lerone, Percell, Theo, Alphonse, Jerome, | 
            
                                                        
            
                                    
            
            
                | 41 |  |  | Leroy, Rasaan, Torrance, Darnell, Lamar, Lionel, Rashaun, Tyree, Deion, Lamont, Malik, | 
            
                                                        
            
                                    
            
            
                | 42 |  |  | Terrence, Tyrone, Everol, Lavon, Marcellus, Terryl, Wardell, Aiesha, Lashelle, Nichelle, | 
            
                                                        
            
                                    
            
            
                | 43 |  |  | Shereen, Temeka, Ebony, Latisha, Shaniqua, Tameisha, Teretha, Jasmine, Latonya, Shanise, | 
            
                                                        
            
                                    
            
            
                | 44 |  |  | Tanisha, Tia, Lakisha, Latoya, Sharise, Tashika, Yolanda, Lashandra, Malika, Shavonn, | 
            
                                                        
            
                                    
            
            
                | 45 |  |  | Tawanda, Yvette. | 
            
                                                        
            
                                    
            
            
                | 46 |  |  | • Pleasant: caress, freedom, health, love, peace, cheer, friend, heaven, loyal, pleasure, diamond, | 
            
                                                        
            
                                    
            
            
                | 47 |  |  | gentle, honest, lucky, rainbow, diploma, gift, honor, miracle, sunrise, family, | 
            
                                                        
            
                                    
            
            
                | 48 |  |  | happy, laughter, paradise, vacation. | 
            
                                                        
            
                                    
            
            
                | 49 |  |  | • Unpleasant: abuse, crash, filth, murder, sickness, accident, death, grief, poison, stink, | 
            
                                                        
            
                                    
            
            
                | 50 |  |  | assault, disaster, hatred, pollute, tragedy, bomb, divorce, jail, poverty, ugly, cancer, evil, | 
            
                                                        
            
                                    
            
            
                | 51 |  |  | kill, rotten, vomit. | 
            
                                                        
            
                                    
            
            
                | 52 |  |  | WEAT_DATA 4: We use the European American and African American names from (7), along with | 
            
                                                        
            
                                    
            
            
                | 53 |  |  | pleasant and unpleasant attributes found in (5). | 
            
                                                        
            
                                    
            
            
                | 54 |  |  | • European American names: Brad, Brendan, Geoffrey, Greg, Brett, Jay, Matthew, Neil, | 
            
                                                        
            
                                    
            
            
                | 55 |  |  | Todd, Allison, Anne, Carrie, Emily, Jill, Laurie, Kristen, Meredith, Sarah. | 
            
                                                        
            
                                    
            
            
                | 56 |  |  | • African American names: Darnell, Hakim, Jermaine, Kareem, Jamal, Leroy, Rasheed, | 
            
                                                        
            
                                    
            
            
                | 57 |  |  | Tremayne, Tyrone, Aisha, Ebony, Keisha, Kenya, Latonya, Lakisha, Latoya, Tamika, | 
            
                                                        
            
                                    
            
            
                | 58 |  |  | Tanisha. | 
            
                                                        
            
                                    
            
            
                | 59 |  |  | • Pleasant: caress, freedom, health, love, peace, cheer, friend, heaven, loyal, pleasure, diamond, | 
            
                                                        
            
                                    
            
            
                | 60 |  |  | gentle, honest, lucky, rainbow, diploma, gift, honor, miracle, sunrise, family, | 
            
                                                        
            
                                    
            
            
                | 61 |  |  | happy, laughter, paradise, vacation. | 
            
                                                        
            
                                    
            
            
                | 62 |  |  | • Unpleasant: abuse, crash, filth, murder, sickness, accident, death, grief, poison, stink, | 
            
                                                        
            
                                    
            
            
                | 63 |  |  | assault, disaster, hatred, pollute, tragedy, bomb, divorce, jail, poverty, ugly, cancer, evil, | 
            
                                                        
            
                                    
            
            
                | 64 |  |  | kill, rotten, vomit. | 
            
                                                        
            
                                    
            
            
                | 65 |  |  | WEAT_DATA 5: We use the European American and African American names from (7), along with | 
            
                                                        
            
                                    
            
            
                | 66 |  |  | pleasant and unpleasant attributes found in (9). | 
            
                                                        
            
                                    
            
            
                | 67 |  |  | • European American names: Brad, Brendan, Geoffrey, Greg, Brett, Jay, Matthew, Neil, | 
            
                                                        
            
                                    
            
            
                | 68 |  |  | Todd, Allison, Anne, Carrie, Emily, Jill, Laurie, Kristen, Meredith, Sarah. | 
            
                                                        
            
                                    
            
            
                | 69 |  |  | • African American names: Darnell, Hakim, Jermaine, Kareem, Jamal, Leroy, Rasheed, | 
            
                                                        
            
                                    
            
            
                | 70 |  |  | Tremayne, Tyrone, Aisha, Ebony, Keisha, Kenya, Latonya, Lakisha, Latoya, Tamika, | 
            
                                                        
            
                                    
            
            
                | 71 |  |  | Tanisha. | 
            
                                                        
            
                                    
            
            
                | 72 |  |  | • Pleasant: joy, love, peace, wonderful, pleasure, friend, laughter, happy. | 
            
                                                        
            
                                    
            
            
                | 73 |  |  | • Unpleasant: agony, terrible, horrible, nasty, evil, war, awful, failure. | 
            
                                                        
            
                                    
            
            
                | 74 |  |  | WEAT_DATA 6: We use the male and female names along with career and family attributes found | 
            
                                                        
            
                                    
            
            
                | 75 |  |  | in (9). | 
            
                                                        
            
                                    
            
            
                | 76 |  |  | • Male names: John, Paul, Mike, Kevin, Steve, Greg, Jeff, Bill. | 
            
                                                        
            
                                    
            
            
                | 77 |  |  | • Female names: Amy, Joan, Lisa, Sarah, Diana, Kate, Ann, Donna. | 
            
                                                        
            
                                    
            
            
                | 78 |  |  | • Career: executive, management, professional, corporation, salary, office, business, career. | 
            
                                                        
            
                                    
            
            
                | 79 |  |  | • Family: home, parents, children, family, cousins, marriage, wedding, relatives. | 
            
                                                        
            
                                    
            
            
                | 80 |  |  | WEAT_DATA 7: We use the math and arts target words along with male and female attributes found | 
            
                                                        
            
                                    
            
            
                | 81 |  |  | in (9). | 
            
                                                        
            
                                    
            
            
                | 82 |  |  | • Math: math, algebra, geometry, calculus, equations, computation, numbers, addition. | 
            
                                                        
            
                                    
            
            
                | 83 |  |  | • Arts: poetry, art, dance, literature, novel, symphony, drama, sculpture. | 
            
                                                        
            
                                    
            
            
                | 84 |  |  | • Male terms: male, man, boy, brother, he, him, his, son. | 
            
                                                        
            
                                    
            
            
                | 85 |  |  | • Female terms: female, woman, girl, sister, she, her, hers, daughter. | 
            
                                                        
            
                                    
            
            
                | 86 |  |  | WEAT_DATA 8: We use the science and arts target words along with male and female attributes | 
            
                                                        
            
                                    
            
            
                | 87 |  |  | found in (10). | 
            
                                                        
            
                                    
            
            
                | 88 |  |  | • Science: science, technology, physics, chemistry, Einstein, NASA, experiment, astronomy. | 
            
                                                        
            
                                    
            
            
                | 89 |  |  | • Arts: poetry, art, Shakespeare, dance, literature, novel, symphony, drama. | 
            
                                                        
            
                                    
            
            
                | 90 |  |  | • Male terms: brother, father, uncle, grandfather, son, he, his, him. | 
            
                                                        
            
                                    
            
            
                | 91 |  |  | • Female terms: sister, mother, aunt, grandmother, daughter, she, hers, her. | 
            
                                                        
            
                                    
            
            
                | 92 |  |  | WEAT_DATA 9: We use the mental and physical disease target words along with uncontrollability | 
            
                                                        
            
                                    
            
            
                | 93 |  |  | and controllability attributes found in (23). | 
            
                                                        
            
                                    
            
            
                | 94 |  |  | • Mental disease: sad, hopeless, gloomy, tearful, miserable, depressed. | 
            
                                                        
            
                                    
            
            
                | 95 |  |  | • Physical disease: sick, illness, influenza, disease, virus, cancer. | 
            
                                                        
            
                                    
            
            
                | 96 |  |  | • Temporary: impermanent, unstable, variable, fleeting, short-term, brief, occasional. | 
            
                                                        
            
                                    
            
            
                | 97 |  |  | • Permanent: stable, always, constant, persistent, chronic, prolonged, forever. | 
            
                                                        
            
                                    
            
            
                | 98 |  |  | WEAT_DATA 10: We use young and old people’s names as target words along with pleasant and | 
            
                                                        
            
                                    
            
            
                | 99 |  |  | unpleasant attributes found in (9). | 
            
                                                        
            
                                    
            
            
                | 100 |  |  | • Young people’s names: Tiffany, Michelle, Cindy, Kristy, Brad, Eric, Joey, Billy. | 
            
                                                        
            
                                    
            
            
                | 101 |  |  | • Old people’s names: Ethel, Bernice, Gertrude, Agnes, Cecil, Wilbert, Mortimer, Edgar. | 
            
                                                        
            
                                    
            
            
                | 102 |  |  | • Pleasant: joy, love, peace, wonderful, pleasure, friend, laughter, happy. | 
            
                                                        
            
                                    
            
            
                | 103 |  |  | • Unpleasant: agony, terrible, horrible, nasty, evil, war, awful, failure.''' | 
            
                                                        
            
                                    
            
            
                | 104 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 105 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 106 |  |  | def parse_line(line): | 
            
                                                        
            
                                    
            
            
                | 107 |  |  |     name, words_str = line[1:].split(': ') | 
            
                                                        
            
                                    
            
            
                | 108 |  |  |     return {'name': name, 'words': words_str[:-2].split(', ')} | 
            
                                                        
            
                                    
            
            
                | 109 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 110 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 111 |  |  | def parse_case(case): | 
            
                                                        
            
                                    
            
            
                | 112 |  |  |     groups_str = case.replace('\n', ' ').split('•')[1:] | 
            
                                                        
            
                                    
            
            
                | 113 |  |  |     return {'first_target': parse_line(groups_str[0]), | 
            
                                                        
            
                                    
            
            
                | 114 |  |  |             'second_target': parse_line(groups_str[1]), | 
            
                                                        
            
                                    
            
            
                | 115 |  |  |             'first_attribute': parse_line(groups_str[2]), | 
            
                                                        
            
                                    
            
            
                | 116 |  |  |             'second_attribute': parse_line(groups_str[3])} | 
            
                                                        
            
                                    
            
            
                | 117 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 118 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 119 |  |  | cases = TEXT.split('WEAT_DATA')[1:] | 
            
                                                        
            
                                    
            
            
                | 120 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 121 |  |  | WEAT_DATA = [parse_case(case) for case in cases] | 
            
                                                        
            
                                    
            
            
                | 122 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 123 |  |  | WEAT_DATA[1]['first_attribute']['words'] = WEAT_DATA[0]['first_attribute']['words'] | 
            
                                                        
            
                                    
            
            
                | 124 |  |  | WEAT_DATA[1]['second_attribute']['words'] = WEAT_DATA[0]['second_attribute']['words'] | 
            
                                                        
            
                                    
            
            
                | 125 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 126 |  |  | WEAT_DATA[2]['first_target']['remove'] = ['Chip', 'Ian', 'Fred', 'Jed', 'Todd', 'Brandon', 'Hank', 'Wilbur', 'Sara', 'Amber', 'Crystal', 'Meredith', 'Shannon', 'Donna', 'Bobbie-Sue', 'Peggy', 'Sue-Ellen', 'Wendy'] | 
            
                                                        
            
                                    
            
            
                | 127 |  |  | WEAT_DATA[2]['second_target']['remove'] = ['Lerone', 'Percell', 'Rasaan', 'Rashaun', 'Everol', 'Terryl', 'Aiesha', 'Lashelle', 'Temeka', 'Tameisha', 'Teretha', 'Latonya', 'Shanise', 'Sharise', 'Tashika', 'Lashandra', 'Shavonn', 'Tawanda'] | 
            
                                                        
            
                                    
            
            
                | 128 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 129 |  |  | print(len(WEAT_DATA[2]['first_target']['remove']), len(WEAT_DATA[2]['second_target']['remove'])) | 
            
                                                        
            
                                    
            
            
                | 130 |  |  | assert len(WEAT_DATA[2]['first_target']['remove']) == len(WEAT_DATA[2]['second_target']['remove']) | 
            
                                                        
            
                                    
            
            
                | 131 |  |  | assert set(WEAT_DATA[2]['first_target']['remove']).issubset(WEAT_DATA[2]['first_target']['words']) | 
            
                                                        
            
                                    
            
            
                | 132 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 133 |  |  | WEAT_DATA[3]['first_target']['remove'] = ['Jay', 'Kristen'] | 
            
                                                        
            
                                    
            
            
                | 134 |  |  | WEAT_DATA[3]['second_target']['remove'] = ['Tremayne', 'Latonya'] | 
            
                                                        
            
                                    
            
            
                | 135 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 136 |  |  | print(len(WEAT_DATA[3]['first_target']['remove']), len(WEAT_DATA[3]['second_target']['remove'])) | 
            
                                                        
            
                                    
            
            
                | 137 |  |  | assert len(WEAT_DATA[3]['first_target']['remove']) == len(WEAT_DATA[3]['second_target']['remove']) | 
            
                                                        
            
                                    
            
            
                | 138 |  |  | assert set(WEAT_DATA[3]['first_target']['remove']).issubset(WEAT_DATA[3]['first_target']['words']) | 
            
                                                        
            
                                    
            
            
                | 139 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 140 |  |  | WEAT_DATA[4]['first_target']['remove'] = ['Jay', 'Kristen'] | 
            
                                                        
            
                                    
            
            
                | 141 |  |  | WEAT_DATA[4]['second_target']['remove'] = ['Tremayne', 'Latonya'] | 
            
                                                        
            
                                    
            
            
                | 142 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 143 |  |  | print(len(WEAT_DATA[4]['first_target']['remove']), len(WEAT_DATA[4]['second_target']['remove'])) | 
            
                                                        
            
                                    
            
            
                | 144 |  |  | assert len(WEAT_DATA[4]['first_target']['remove']) == len(WEAT_DATA[4]['second_target']['remove']) | 
            
                                                        
            
                                    
            
            
                | 145 |  |  | assert set(WEAT_DATA[4]['first_target']['remove']).issubset(WEAT_DATA[4]['first_target']['words']) | 
            
                                                        
            
                                    
            
            
                | 146 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 147 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 148 |  |  | WEAT_DATA[0]['original_finding'] = {'Ref': 'A. G. Greenwald, D. E. McGhee, J. L. Schwartz, Measuring individual differences in im- plicit cognition: the implicit association test., Journal of personality and social psychology 74, 1464 (1998).', | 
            
                                                        
            
                                    
            
            
                | 149 |  |  |                                     'N': '32', | 
            
                                                        
            
                                    
            
            
                | 150 |  |  |                                     'd': '1.35', | 
            
                                                        
            
                                    
            
            
                | 151 |  |  |                                     'p': '1e-8'} | 
            
                                                        
            
                                    
            
            
                | 152 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 153 |  |  | WEAT_DATA[1]['original_finding'] = {'Ref': 'A. G. Greenwald, D. E. McGhee, J. L. Schwartz, Measuring individual differences in im- plicit cognition: the implicit association test., Journal of personality and social psychology 74, 1464 (1998).', | 
            
                                                        
            
                                    
            
            
                | 154 |  |  |                                     'N': '32', | 
            
                                                        
            
                                    
            
            
                | 155 |  |  |                                     'd': '1.66', | 
            
                                                        
            
                                    
            
            
                | 156 |  |  |                                     'p': '1e-10'} | 
            
                                                        
            
                                    
            
            
                | 157 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 158 |  |  | WEAT_DATA[2]['original_finding'] = {'Ref': 'A. G. Greenwald, D. E. McGhee, J. L. Schwartz, Measuring individual differences in im- plicit cognition: the implicit association test., Journal of personality and social psychology 74, 1464 (1998).', | 
            
                                                        
            
                                    
            
            
                | 159 |  |  |                                     'N': '26', | 
            
                                                        
            
                                    
            
            
                | 160 |  |  |                                     'd': '1.17', | 
            
                                                        
            
                                    
            
            
                | 161 |  |  |                                     'p': '1e-5'} | 
            
                                                        
            
                                    
            
            
                | 162 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 163 |  |  | WEAT_DATA[3]['original_finding'] = {'Ref': 'M. Bertrand, S. Mullainathan, Are Emily and Greg more employable than Lakisha and Jamal? a field experiment on labor market discrimination, The American Economic Review 94, 991 (2004).', | 
            
                                                        
            
                                    
            
            
                | 164 |  |  |                                     'N': '', | 
            
                                                        
            
                                    
            
            
                | 165 |  |  |                                     'd': '', | 
            
                                                        
            
                                    
            
            
                | 166 |  |  |                                     'p': ''} | 
            
                                                        
            
                                    
            
            
                | 167 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 168 |  |  | WEAT_DATA[4]['original_finding'] = {'Ref': 'M. Bertrand, S. Mullainathan, Are Emily and Greg more employable than Lakisha and Jamal? a field experiment on labor market discrimination, The American Economic Review 94, 991 (2004).', | 
            
                                                        
            
                                    
            
            
                | 169 |  |  |                                     'N': '', | 
            
                                                        
            
                                    
            
            
                | 170 |  |  |                                     'd': '', | 
            
                                                        
            
                                    
            
            
                | 171 |  |  |                                     'p': ''} | 
            
                                                        
            
                                    
            
            
                | 172 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 173 |  |  | WEAT_DATA[5]['original_finding'] = {'Ref': 'B. A. Nosek, M. Banaji, A. G. Greenwald, Harvesting implicit group attitudes and beliefs from a demonstration web site., Group Dynamics: Theory, Research, and Practice 6, 101 (2002).', | 
            
                                                        
            
                                    
            
            
                | 174 |  |  |                                     'N': '39k', | 
            
                                                        
            
                                    
            
            
                | 175 |  |  |                                     'd': '0.72', | 
            
                                                        
            
                                    
            
            
                | 176 |  |  |                                     'p': '< 1e-2'} | 
            
                                                        
            
                                    
            
            
                | 177 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 178 |  |  | WEAT_DATA[6]['original_finding'] = {'Ref': 'B. A. Nosek, M. Banaji, A. G. Greenwald, Harvesting implicit group attitudes and beliefs from a demonstration web site., Group Dynamics: Theory, Research, and Practice 6, 101 (2002).', | 
            
                                                        
            
                                    
            
            
                | 179 |  |  |                                     'N': '28k', | 
            
                                                        
            
                                    
            
            
                | 180 |  |  |                                     'd': '0.82', | 
            
                                                        
            
                                    
            
            
                | 181 |  |  |                                     'p': '< 1e-2'} | 
            
                                                        
            
                                    
            
            
                | 182 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 183 |  |  | WEAT_DATA[7]['original_finding'] = {'Ref': 'B. A. Nosek, M. R. Banaji, A. G. Greenwald, Math=male, me=female, therefore math̸=me., Journal of Personality and Social Psychology 83, 44 (2002).', | 
            
                                                        
            
                                    
            
            
                | 184 |  |  |                                     'N': '91', | 
            
                                                        
            
                                    
            
            
                | 185 |  |  |                                     'd': '1.47', | 
            
                                                        
            
                                    
            
            
                | 186 |  |  |                                     'p': '1e-24'} | 
            
                                                        
            
                                    
            
            
                | 187 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 188 |  |  | WEAT_DATA[8]['original_finding'] = {'Ref': 'P. D. Turney, P. Pantel, From frequency to meaning: Vector space models of semantics, Journal of Artificial Intelligence Research 37, 141 (2010).', | 
            
                                                        
            
                                    
            
            
                | 189 |  |  |                                     'N': '135', | 
            
                                                        
            
                                    
            
            
                | 190 |  |  |                                     'd': '1.01', | 
            
                                                        
            
                                    
            
            
                | 191 |  |  |                                     'p': '1e-3'} | 
            
                                                        
            
                                    
            
            
                | 192 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 193 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 194 |  |  | WEAT_DATA[9]['original_finding'] = {'Ref': 'B. A. Nosek, M. Banaji, A. G. Greenwald, Harvesting implicit group attitudes and beliefs from a demonstration web site., Group Dynamics: Theory, Research, and Practice 6, 101 (2002).', | 
            
                                                        
            
                                    
            
            
                | 195 |  |  |                                     'N': '43k', | 
            
                                                        
            
                                    
            
            
                | 196 |  |  |                                     'd': '1.42', | 
            
                                                        
            
                                    
            
            
                | 197 |  |  |                                     'p': '< 1e-2'} | 
            
                                                        
            
                                    
            
            
                | 198 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 199 |  |  | json.dump(WEAT_DATA, open('weat.json', 'w'), indent=True) | 
            
                                                        
            
                                    
            
            
                | 200 |  |  |  |