| Total Complexity | 41 | 
| Total Lines | 620 | 
| Duplicated Lines | 18.87 % | 
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like ethically.fairness.interventions.threshold often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """ | ||
| 2 | Post-processing fairness intervension by choosing thresholds. | ||
| 3 | |||
| 4 | There are multiple definitions for choosing the thresholds: | ||
| 5 | |||
| 6 | 1. Single threshold for all the sensitive attribute values | ||
| 7 | that minimizes cost. | ||
| 8 | 2. A threshold for each sensitive attribute value | ||
| 9 | that minimize cost. | ||
| 10 | 3. A threshold for each sensitive attribute value | ||
| 11 | that achieve independence and minimize cost. | ||
| 12 | 4. A threshold for each sensitive attribute value | ||
| 13 | that achieve equal FNR (equal opportunity) and minimize cost. | ||
| 14 | 5. A threshold for each sensitive attribute value | ||
| 15 | that achieve seperation (equalized odds) and minimize cost. | ||
| 16 | |||
| 17 | The code is based on `fairmlbook repository <https://github.com/fairmlbook/fairmlbook.github.io>`_. | ||
| 18 | |||
| 19 | References: | ||
| 20 | - Hardt, M., Price, E., & Srebro, N. (2016). | ||
| 21 | `Equality of opportunity in supervised learning | ||
| 22 | <https://arxiv.org/abs/1610.02413>`_ | ||
| 23 | In Advances in neural information processing systems | ||
| 24 | (pp. 3315-3323). | ||
| 25 | - `Attacking discrimination with | ||
| 26 | smarter machine learning by Google | ||
| 27 | <https://research.google.com/bigpicture/attacking-discrimination-in-ml/>`_. | ||
| 28 | |||
| 29 | """ | ||
| 30 | |||
| 31 | # pylint: disable=no-name-in-module | ||
| 32 | |||
| 33 | import matplotlib.pylab as plt | ||
| 34 | import numpy as np | ||
| 35 | import pandas as pd | ||
| 36 | from scipy.spatial import Delaunay | ||
| 37 | |||
| 38 | from ethically.fairness.metrics.visualization import plot_roc_curves | ||
| 39 | |||
| 40 | |||
| 41 | def _ternary_search_float(f, left, right, tol): | ||
| 42 | """Trinary search: minimize f(x) over [left, right], to within +/-tol in x. | ||
| 43 | |||
| 44 | Works assuming f is quasiconvex. | ||
| 45 | |||
| 46 | """ | ||
| 47 | while right - left > tol: | ||
| 48 | left_third = (2 * left + right) / 3 | ||
| 49 | right_third = (left + 2 * right) / 3 | ||
| 50 | if f(left_third) < f(right_third): | ||
| 51 | right = right_third | ||
| 52 | else: | ||
| 53 | left = left_third | ||
| 54 | return (right + left) / 2 | ||
| 55 | |||
| 56 | |||
| 57 | def _ternary_search_domain(f, domain): | ||
| 58 | """Trinary search: minimize f(x) over a domain (sequence). | ||
| 59 | |||
| 60 | Works assuming f is quasiconvex and domain is ascending sorted. | ||
| 61 | |||
| 62 | """ | ||
| 63 | left = 0 | ||
| 64 | right = len(domain) - 1 | ||
| 65 | changed = True | ||
| 66 | |||
| 67 | while changed and left != right: | ||
| 68 | |||
| 69 | changed = False | ||
| 70 | |||
| 71 | left_third = (2 * left + right) // 3 | ||
| 72 | right_third = (left + 2 * right) // 3 | ||
| 73 | |||
| 74 | if f(domain[left_third]) < f(domain[right_third]): | ||
| 75 | right = right_third - 1 | ||
| 76 | changed = True | ||
| 77 | else: | ||
| 78 | left = left_third + 1 | ||
| 79 | changed = True | ||
| 80 | |||
| 81 | return domain[(left + right) // 2] | ||
| 82 | |||
| 83 | |||
| 84 | def _cost_function(fpr, tpr, base_rate, cost_matrix): | ||
| 85 | """Compute the cost of given (fpr, tpr). | ||
| 86 | |||
| 87 | [[tn, fp], [fn, tp]] | ||
| 88 | """ | ||
| 89 | |||
| 90 | fp = fpr * (1 - base_rate) | ||
| 91 | tn = (1 - base_rate) - fp | ||
| 92 | tp = tpr * base_rate | ||
| 93 | fn = base_rate - tp | ||
| 94 | |||
| 95 | conf_matrix = np.array([tn, fp, fn, tp]) | ||
| 96 | |||
| 97 | return (conf_matrix * np.array(cost_matrix).ravel()).sum() | ||
| 98 | |||
| 99 | |||
| 100 | def _extract_threshold(roc_curves): | ||
| 101 | return next(iter(roc_curves.values()))[2] | ||
| 102 | |||
| 103 | |||
| 104 | def _first_index_above(array, value): | ||
| 105 | """Find the smallest index i for which array[i] > value. | ||
| 106 | |||
| 107 | If no such value exists, return len(array). | ||
| 108 | """ | ||
| 109 | array = np.array(array) | ||
| 110 | v = np.concatenate([array > value, np.ones_like(array[-1:])]) | ||
| 111 | return np.argmax(v, axis=0) | ||
| 112 | |||
| 113 | |||
| 114 | def _calc_acceptance_rate(fpr, tpr, base_rate): | ||
| 115 | return 1 - ((fpr * (1 - base_rate) | ||
| 116 | + tpr * base_rate)) | ||
| 117 | |||
| 118 | |||
| 119 | def find_single_threshold(roc_curves, base_rates, proportions, | ||
| 120 | cost_matrix): | ||
| 121 | """Compute single threshold that minimizes cost. | ||
| 122 | |||
| 123 | :param roc_curves: Receiver operating characteristic (ROC) | ||
| 124 | by attribute. | ||
| 125 | :type roc_curves: dict | ||
| 126 | :param base_rates: Base rate by attribute. | ||
| 127 | :type base_rates: dict | ||
| 128 | :param proportions: Proportion of each attribute value. | ||
| 129 | :type proportions: dict | ||
| 130 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. | ||
| 131 | :type cost_matrix: sequence | ||
| 132 | :return: Threshold, FPR and TPR by attribute and cost value. | ||
| 133 | :rtype: tuple | ||
| 134 | |||
| 135 | """ | ||
| 136 | |||
| 137 | def total_cost_function(index): | ||
| 138 | total_cost = 0 | ||
| 139 | |||
| 140 | for group, roc in roc_curves.items(): | ||
| 141 | fpr = roc[0][index] | ||
| 142 | tpr = roc[1][index] | ||
| 143 | |||
| 144 | group_cost = _cost_function(fpr, tpr, | ||
| 145 | base_rates[group], cost_matrix) | ||
| 146 | group_cost *= proportions[group] | ||
| 147 | |||
| 148 | total_cost += group_cost | ||
| 149 | |||
| 150 | return -total_cost | ||
| 151 | |||
| 152 | thresholds = _extract_threshold(roc_curves) | ||
| 153 | |||
| 154 | cutoff_index = _ternary_search_domain(total_cost_function, | ||
| 155 | range(len(thresholds))) | ||
| 156 | |||
| 157 |     fpr_tpr = {group: (roc[0][cutoff_index], roc[1][cutoff_index]) | ||
| 158 | for group, roc in roc_curves.items()} | ||
| 159 | |||
| 160 | cost = total_cost_function(cutoff_index) | ||
| 161 | |||
| 162 | return thresholds[cutoff_index], fpr_tpr, cost | ||
| 163 | |||
| 164 | |||
| 165 | def find_min_cost_thresholds(roc_curves, base_rates, cost_matrix): | ||
| 166 | """Compute thresholds by attribute values that minimize cost. | ||
| 167 | |||
| 168 | :param roc_curves: Receiver operating characteristic (ROC) | ||
| 169 | by attribute. | ||
| 170 | :type roc_curves: dict | ||
| 171 | :param base_rates: Base rate by attribute. | ||
| 172 | :type base_rates: dict | ||
| 173 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. | ||
| 174 | :type cost_matrix: sequence | ||
| 175 | :return: Thresholds, FPR and TPR by attribute and cost value. | ||
| 176 | :rtype: tuple | ||
| 177 | |||
| 178 | """ | ||
| 179 | # pylint: disable=cell-var-from-loop | ||
| 180 | |||
| 181 |     cutoffs = {} | ||
| 182 |     fpr_tpr = {} | ||
| 183 | |||
| 184 | cost = 0 | ||
| 185 | thresholds = _extract_threshold(roc_curves) | ||
| 186 | |||
| 187 | for group, roc in roc_curves.items(): | ||
| 188 | def group_cost_function(index): | ||
| 189 | fpr = roc[0][index] | ||
| 190 | tpr = roc[1][index] | ||
| 191 | return -_cost_function(fpr, tpr, | ||
| 192 | base_rates[group], cost_matrix) | ||
| 193 | |||
| 194 | threshold_index = _ternary_search_domain(group_cost_function, | ||
| 195 | range(len(thresholds))) | ||
| 196 | |||
| 197 | cutoffs[group] = thresholds[threshold_index] | ||
| 198 | |||
| 199 | fpr_tpr[group] = (roc[0][threshold_index], | ||
| 200 | roc[1][threshold_index]) | ||
| 201 | |||
| 202 | cost += group_cost_function(threshold_index) | ||
| 203 | |||
| 204 | return cutoffs, fpr_tpr, cost | ||
| 205 | |||
| 206 | |||
| 207 | def get_acceptance_rate_indices(roc_curves, base_rates, | ||
| 208 | acceptance_rate_value): | ||
| 209 |     indices = {} | ||
| 210 | for group, roc in roc_curves.items(): | ||
| 211 | # can be calculated outside the function | ||
| 212 | acceptance_rates = _calc_acceptance_rate(fpr=roc[0], | ||
| 213 | tpr=roc[1], | ||
| 214 | base_rate=base_rates[group]) | ||
| 215 | |||
| 216 | index = _first_index_above(acceptance_rates, | ||
| 217 | (1 - acceptance_rate_value)) - 2 | ||
| 218 | |||
| 219 | indices[group] = index | ||
| 220 | |||
| 221 | return indices | ||
| 222 | |||
| 223 | |||
| 224 | View Code Duplication | def find_independence_thresholds(roc_curves, base_rates, proportions, | |
| 225 | cost_matrix): | ||
| 226 | """Compute thresholds that achieve independence and minimize cost. | ||
| 227 | |||
| 228 | :param roc_curves: Receiver operating characteristic (ROC) | ||
| 229 | by attribute. | ||
| 230 | :type roc_curves: dict | ||
| 231 | :param base_rates: Base rate by attribute. | ||
| 232 | :type base_rates: dict | ||
| 233 | :param proportions: Proportion of each attribute value. | ||
| 234 | :type proportions: dict | ||
| 235 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. | ||
| 236 | :type cost_matrix: sequence | ||
| 237 | :return: Thresholds, FPR and TPR by attribute and cost value. | ||
| 238 | :rtype: tuple | ||
| 239 | |||
| 240 | """ | ||
| 241 | |||
| 242 |     cutoffs = {} | ||
| 243 | |||
| 244 | def total_cost_function(acceptance_rate_value): | ||
| 245 | # todo: move demo here + multiple cost | ||
| 246 | indices = get_acceptance_rate_indices(roc_curves, base_rates, | ||
| 247 | acceptance_rate_value) | ||
| 248 | |||
| 249 | total_cost = 0 | ||
| 250 | |||
| 251 | for group, roc in roc_curves.items(): | ||
| 252 | index = indices[group] | ||
| 253 | |||
| 254 | fpr = roc[0][index] | ||
| 255 | tpr = roc[1][index] | ||
| 256 | |||
| 257 | group_cost = _cost_function(fpr, tpr, | ||
| 258 | base_rates[group], | ||
| 259 | cost_matrix) | ||
| 260 | group_cost *= proportions[group] | ||
| 261 | |||
| 262 | total_cost += group_cost | ||
| 263 | |||
| 264 | return -total_cost | ||
| 265 | |||
| 266 | acceptance_rate_min_cost = _ternary_search_float(total_cost_function, | ||
| 267 | 0, 1, 1e-3) | ||
| 268 | threshold_indices = get_acceptance_rate_indices(roc_curves, base_rates, | ||
| 269 | acceptance_rate_min_cost) | ||
| 270 | |||
| 271 | thresholds = _extract_threshold(roc_curves) | ||
| 272 | |||
| 273 |     cutoffs = {group: thresholds[threshold_index] | ||
| 274 | for group, threshold_index | ||
| 275 | in threshold_indices.items()} | ||
| 276 | |||
| 277 |     fpr_tpr = {group: (roc[0][threshold_indices[group]], | ||
| 278 | roc[1][threshold_indices[group]]) | ||
| 279 | for group, roc in roc_curves.items()} | ||
| 280 | |||
| 281 | return cutoffs, fpr_tpr, acceptance_rate_min_cost | ||
| 282 | |||
| 283 | |||
| 284 | def get_fnr_indices(roc_curves, fnr_value): | ||
| 285 |     indices = {} | ||
| 286 | for group, roc in roc_curves.items(): | ||
| 287 | tprs = roc[1] | ||
| 288 | index = _first_index_above(1 - tprs, | ||
| 289 | (1 - fnr_value)) - 1 | ||
| 290 | |||
| 291 | indices[group] = index | ||
| 292 | |||
| 293 | return indices | ||
| 294 | |||
| 295 | |||
| 296 | View Code Duplication | def find_fnr_thresholds(roc_curves, base_rates, proportions, | |
|  | |||
| 297 | cost_matrix): | ||
| 298 | """Compute thresholds that achieve equal FNRs and minimize cost. | ||
| 299 | |||
| 300 | Also known as **equal opportunity**. | ||
| 301 | |||
| 302 | :param roc_curves: Receiver operating characteristic (ROC) | ||
| 303 | by attribute. | ||
| 304 | :type roc_curves: dict | ||
| 305 | :param base_rates: Base rate by attribute. | ||
| 306 | :type base_rates: dict | ||
| 307 | :param proportions: Proportion of each attribute value. | ||
| 308 | :type proportions: dict | ||
| 309 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. | ||
| 310 | :type cost_matrix: sequence | ||
| 311 | :return: Thresholds, FPR and TPR by attribute and cost value. | ||
| 312 | :rtype: tuple | ||
| 313 | |||
| 314 | """ | ||
| 315 | |||
| 316 |     cutoffs = {} | ||
| 317 | |||
| 318 | def total_cost_function(fnr_value): | ||
| 319 | # todo: move demo here + multiple cost | ||
| 320 | indices = get_fnr_indices(roc_curves, fnr_value) | ||
| 321 | |||
| 322 | total_cost = 0 | ||
| 323 | |||
| 324 | for group, roc in roc_curves.items(): | ||
| 325 | index = indices[group] | ||
| 326 | |||
| 327 | fpr = roc[0][index] | ||
| 328 | tpr = roc[1][index] | ||
| 329 | |||
| 330 | group_cost = _cost_function(fpr, tpr, | ||
| 331 | base_rates[group], | ||
| 332 | cost_matrix) | ||
| 333 | group_cost *= proportions[group] | ||
| 334 | |||
| 335 | total_cost += group_cost | ||
| 336 | |||
| 337 | return -total_cost | ||
| 338 | |||
| 339 | fnr_value_min_cost = _ternary_search_float(total_cost_function, | ||
| 340 | 0, 1, 1e-3) | ||
| 341 | threshold_indices = get_fnr_indices(roc_curves, fnr_value_min_cost) | ||
| 342 | |||
| 343 | cost = total_cost_function(fnr_value_min_cost) | ||
| 344 | |||
| 345 |     fpr_tpr = {group: (roc[0][threshold_indices[group]], | ||
| 346 | roc[1][threshold_indices[group]]) | ||
| 347 | for group, roc in roc_curves.items()} | ||
| 348 | |||
| 349 | thresholds = _extract_threshold(roc_curves) | ||
| 350 |     cutoffs = {group: thresholds[threshold_index] | ||
| 351 | for group, threshold_index | ||
| 352 | in threshold_indices.items()} | ||
| 353 | |||
| 354 | return cutoffs, fpr_tpr, cost, fnr_value_min_cost | ||
| 355 | |||
| 356 | |||
| 357 | def _find_feasible_roc(roc_curves): | ||
| 358 | polygons = [Delaunay(list(zip(fprs, tprs))) | ||
| 359 | for group, (fprs, tprs, _) in roc_curves.items()] | ||
| 360 | |||
| 361 | feasible_points = [] | ||
| 362 | |||
| 363 | for poly in polygons: | ||
| 364 | for p in poly.points: | ||
| 365 | |||
| 366 | if all(poly2.find_simplex(p) != -1 for poly2 in polygons): | ||
| 367 | feasible_points.append(p) | ||
| 368 | |||
| 369 | return np.array(feasible_points) | ||
| 370 | |||
| 371 | |||
| 372 | def find_separation_thresholds(roc_curves, base_rate, cost_matrix): | ||
| 373 | """Compute thresholds that achieve separation and minimize cost. | ||
| 374 | |||
| 375 | Also known as **equalized odds**. | ||
| 376 | |||
| 377 | :param roc_curves: Receiver operating characteristic (ROC) | ||
| 378 | by attribute. | ||
| 379 | :type roc_curves: dict | ||
| 380 | :param base_rate: Overall base rate. | ||
| 381 | :type base_rate: float | ||
| 382 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. | ||
| 383 | :type cost_matrix: sequence | ||
| 384 | :return: Thresholds, FPR and TPR by attribute and cost value. | ||
| 385 | :rtype: tuple | ||
| 386 | |||
| 387 | """ | ||
| 388 | |||
| 389 | feasible_points = _find_feasible_roc(roc_curves) | ||
| 390 | |||
| 391 | cost, (best_fpr, best_tpr) = max((_cost_function(fpr, tpr, base_rate, | ||
| 392 | cost_matrix), | ||
| 393 | (fpr, tpr)) | ||
| 394 | for fpr, tpr in feasible_points) | ||
| 395 | |||
| 396 |     return {}, {'': (best_fpr, best_tpr)}, cost | ||
| 397 | |||
| 398 | |||
| 399 | def find_thresholds(roc_curves, proportions, base_rate, | ||
| 400 | base_rates, cost_matrix, | ||
| 401 | with_single=True, with_min_cost=True, | ||
| 402 | with_independence=True, with_fnr=True, | ||
| 403 | with_separation=True): | ||
| 404 | """Compute thresholds that achieve various criteria and minimize cost. | ||
| 405 | |||
| 406 | :param roc_curves: Receiver operating characteristic (ROC) | ||
| 407 | by attribute. | ||
| 408 | :type roc_curves: dict | ||
| 409 | :param proportions: Proportion of each attribute value. | ||
| 410 | :type proportions: dict | ||
| 411 | :param base_rate: Overall base rate. | ||
| 412 | :type base_rate: float | ||
| 413 | :param base_rates: Base rate by attribute. | ||
| 414 | :type base_rates: dict | ||
| 415 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. | ||
| 416 | :type cost_matrix: sequence | ||
| 417 | |||
| 418 | :param with_single: Compute single threshold. | ||
| 419 | :type with_single: bool | ||
| 420 | :param with_min_cost: Compute minimum cost thresholds. | ||
| 421 | :type with_min_cost: bool | ||
| 422 | :param with_independence: Compute independence thresholds. | ||
| 423 | :type with_independence: bool | ||
| 424 | :param with_fnr: Compute FNR thresholds. | ||
| 425 | :type with_fnr: bool | ||
| 426 | :param with_separation: Compute separation thresholds. | ||
| 427 | :type with_separation: bool | ||
| 428 | |||
| 429 | :return: Dictionary of threshold criteria, | ||
| 430 | and for each criterion: | ||
| 431 | thresholds, FPR and TPR by attribute and cost value. | ||
| 432 | :rtype: dict | ||
| 433 | |||
| 434 | """ | ||
| 435 | |||
| 436 |     thresholds = {} | ||
| 437 | |||
| 438 | if with_single: | ||
| 439 | thresholds['single'] = find_single_threshold(roc_curves, | ||
| 440 | base_rates, | ||
| 441 | proportions, | ||
| 442 | cost_matrix) | ||
| 443 | |||
| 444 | if with_min_cost: | ||
| 445 | thresholds['min_cost'] = find_min_cost_thresholds(roc_curves, | ||
| 446 | base_rates, | ||
| 447 | cost_matrix) | ||
| 448 | |||
| 449 | if with_independence: | ||
| 450 | thresholds['independence'] = find_independence_thresholds(roc_curves, | ||
| 451 | base_rates, | ||
| 452 | proportions, | ||
| 453 | cost_matrix) | ||
| 454 | |||
| 455 | if with_fnr: | ||
| 456 | thresholds['fnr'] = find_fnr_thresholds(roc_curves, | ||
| 457 | base_rates, | ||
| 458 | proportions, | ||
| 459 | cost_matrix) | ||
| 460 | |||
| 461 | if with_separation: | ||
| 462 | thresholds['separation'] = find_separation_thresholds(roc_curves, | ||
| 463 | base_rate, | ||
| 464 | cost_matrix) | ||
| 465 | |||
| 466 | return thresholds | ||
| 467 | |||
| 468 | |||
| 469 | def plot_roc_curves_thresholds(roc_curves, thresholds_data, | ||
| 470 | aucs=None, | ||
| 471 | title='ROC Curves by Attribute', | ||
| 472 | ax=None, figsize=None, | ||
| 473 | title_fontsize='large', | ||
| 474 | text_fontsize='medium'): | ||
| 475 | """Generate the ROC curves by attribute with thresholds. | ||
| 476 | |||
| 477 | Based on :func:`skplt.metrics.plot_roc` | ||
| 478 | |||
| 479 | :param roc_curves: Receiver operating characteristic (ROC) | ||
| 480 | by attribute. | ||
| 481 | :type roc_curves: dict | ||
| 482 | :param thresholds_data: Thresholds by attribute from the | ||
| 483 | function | ||
| 484 | :func:`~ethically.interventions | ||
| 485 | .threshold.find_thresholds`. | ||
| 486 | :type thresholds_data: dict | ||
| 487 | :param aucs: Area Under the ROC (AUC) by attribute. | ||
| 488 | :type aucs: dict | ||
| 489 | :param str title: Title of the generated plot. | ||
| 490 | :param ax: The axes upon which to plot the curve. | ||
| 491 | If `None`, the plot is drawn on a new set of axes. | ||
| 492 | :param tuple figsize: Tuple denoting figure size of the plot | ||
| 493 | e.g. (6, 6). | ||
| 494 | :param title_fontsize: Matplotlib-style fontsizes. | ||
| 495 | Use e.g. 'small', 'medium', 'large' | ||
| 496 | or integer-values. | ||
| 497 | :param text_fontsize: Matplotlib-style fontsizes. | ||
| 498 | Use e.g. 'small', 'medium', 'large' | ||
| 499 | or integer-values. | ||
| 500 | :return: The axes on which the plot was drawn. | ||
| 501 | :rtype: :class:`matplotlib.axes.Axes` | ||
| 502 | |||
| 503 | """ | ||
| 504 | |||
| 505 | ax = plot_roc_curves(roc_curves, aucs, | ||
| 506 | title, ax, figsize, title_fontsize, text_fontsize) | ||
| 507 | |||
| 508 | MARKERS = ['o', '^', 'x', '+', 'p'] | ||
| 509 | |||
| 510 | for (name, data), marker in zip(thresholds_data.items(), MARKERS): | ||
| 511 |         label = name.replace('_', ' ').title() | ||
| 512 | ax.scatter(*zip(*data[1].values()), | ||
| 513 | marker=marker, color='k', label=label, | ||
| 514 |                    zorder=float('inf')) | ||
| 515 | |||
| 516 | plt.legend() | ||
| 517 | |||
| 518 | return ax | ||
| 519 | |||
| 520 | |||
| 521 | def plot_fpt_tpr(roc_curves, | ||
| 522 | title='FPR-TPR Curves by Attribute', | ||
| 523 | ax=None, figsize=None, | ||
| 524 | title_fontsize='large', text_fontsize='medium'): | ||
| 525 | """Generate FPR and TPR curves by thresholds and by attribute. | ||
| 526 | |||
| 527 | Based on :func:`skplt.metrics.plot_roc` | ||
| 528 | |||
| 529 | :param roc_curves: Receiver operating characteristic (ROC) | ||
| 530 | by attribute. | ||
| 531 | :type roc_curves: dict | ||
| 532 | :param str title: Title of the generated plot. | ||
| 533 | :param ax: The axes upon which to plot the curve. | ||
| 534 | If `None`, the plot is drawn on a new set of axes. | ||
| 535 | :param tuple figsize: Tuple denoting figure size of the plot | ||
| 536 | e.g. (6, 6). | ||
| 537 | :param title_fontsize: Matplotlib-style fontsizes. | ||
| 538 | Use e.g. 'small', 'medium', 'large' | ||
| 539 | or integer-values. | ||
| 540 | :param text_fontsize: Matplotlib-style fontsizes. | ||
| 541 | Use e.g. 'small', 'medium', 'large' | ||
| 542 | or integer-values. | ||
| 543 | :return: The axes on which the plot was drawn. | ||
| 544 | :rtype: :class:`matplotlib.axes.Axes` | ||
| 545 | |||
| 546 | """ | ||
| 547 | |||
| 548 | if ax is None: | ||
| 549 | fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable | ||
| 550 | |||
| 551 | ax.set_title(title, fontsize=title_fontsize) | ||
| 552 | |||
| 553 | thresholds = _extract_threshold(roc_curves) | ||
| 554 | |||
| 555 | prop_cycle = plt.rcParams['axes.prop_cycle'] | ||
| 556 | colors = prop_cycle.by_key()['color'] | ||
| 557 | |||
| 558 | for (group, roc), color in zip(roc_curves.items(), colors): | ||
| 559 | plt.plot(thresholds, roc[0], '-', | ||
| 560 |                  label='{} - FPR'.format(group), color=color) | ||
| 561 | plt.plot(thresholds, roc[1], '--', | ||
| 562 |                  label='{} - TPR'.format(group), color=color) | ||
| 563 | plt.legend() | ||
| 564 | |||
| 565 | ax.set_ylim([0.0, 1.05]) | ||
| 566 |     ax.set_xlabel('Threshold', fontsize=text_fontsize) | ||
| 567 |     ax.set_ylabel('Probability', fontsize=text_fontsize) | ||
| 568 | ax.tick_params(labelsize=text_fontsize) | ||
| 569 | ax.legend(fontsize=text_fontsize) | ||
| 570 | |||
| 571 | return ax | ||
| 572 | |||
| 573 | |||
| 574 | def plot_costs(thresholds_data, | ||
| 575 | title='Cost by Threshold', | ||
| 576 | ax=None, figsize=None, | ||
| 577 | title_fontsize='large', text_fontsize='medium'): | ||
| 578 | """Plot cost by threshold definition and by attribute. | ||
| 579 | |||
| 580 | Based on :func:`skplt.metrics.plot_roc` | ||
| 581 | |||
| 582 | :param thresholds_data: Thresholds by attribute from the | ||
| 583 | function | ||
| 584 | :func:`~ethically.interventions | ||
| 585 | .threshold.find_thresholds`. | ||
| 586 | :type thresholds_data: dict | ||
| 587 | :param str title: Title of the generated plot. | ||
| 588 | :param ax: The axes upon which to plot the curve. | ||
| 589 | If `None`, the plot is drawn on a new set of axes. | ||
| 590 | :param tuple figsize: Tuple denoting figure size of the plot | ||
| 591 | e.g. (6, 6). | ||
| 592 | :param title_fontsize: Matplotlib-style fontsizes. | ||
| 593 | Use e.g. 'small', 'medium', 'large' | ||
| 594 | or integer-values. | ||
| 595 | :param text_fontsize: Matplotlib-style fontsizes. | ||
| 596 | Use e.g. 'small', 'medium', 'large' | ||
| 597 | or integer-values. | ||
| 598 | :return: The axes on which the plot was drawn. | ||
| 599 | :rtype: :class:`matplotlib.axes.Axes` | ||
| 600 | |||
| 601 | """ | ||
| 602 | |||
| 603 | if ax is None: | ||
| 604 | fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable | ||
| 605 | |||
| 606 | ax.set_title(title, fontsize=title_fontsize) | ||
| 607 | |||
| 608 |     costs = {group.replace('_', ' ').title(): cost | ||
| 609 | for group, (_, _, cost, *_) in thresholds_data.items()} | ||
| 610 | |||
| 611 | (pd.Series(costs) | ||
| 612 | .sort_values(ascending=False) | ||
| 613 | .plot(kind='barh', ax=ax)) | ||
| 614 | |||
| 615 |     ax.set_xlabel('Cost', fontsize=text_fontsize) | ||
| 616 |     ax.set_ylabel('Threshold', fontsize=text_fontsize) | ||
| 617 | ax.tick_params(labelsize=text_fontsize) | ||
| 618 | |||
| 619 | return ax | ||
| 620 |