Total Complexity | 41 |
Total Lines | 620 |
Duplicated Lines | 18.87 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like ethically.fairness.interventions.threshold often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """ |
||
2 | Post-processing fairness intervension by choosing thresholds. |
||
3 | |||
4 | There are multiple definitions for choosing the thresholds: |
||
5 | |||
6 | 1. Single threshold for all the sensitive attribute values |
||
7 | that minimizes cost. |
||
8 | 2. A threshold for each sensitive attribute value |
||
9 | that minimize cost. |
||
10 | 3. A threshold for each sensitive attribute value |
||
11 | that achieve independence and minimize cost. |
||
12 | 4. A threshold for each sensitive attribute value |
||
13 | that achieve equal FNR (equal opportunity) and minimize cost. |
||
14 | 5. A threshold for each sensitive attribute value |
||
15 | that achieve seperation (equalized odds) and minimize cost. |
||
16 | |||
17 | The code is based on `fairmlbook repository <https://github.com/fairmlbook/fairmlbook.github.io>`_. |
||
18 | |||
19 | References: |
||
20 | - Hardt, M., Price, E., & Srebro, N. (2016). |
||
21 | `Equality of opportunity in supervised learning |
||
22 | <https://arxiv.org/abs/1610.02413>`_ |
||
23 | In Advances in neural information processing systems |
||
24 | (pp. 3315-3323). |
||
25 | - `Attacking discrimination with |
||
26 | smarter machine learning by Google |
||
27 | <https://research.google.com/bigpicture/attacking-discrimination-in-ml/>`_. |
||
28 | |||
29 | """ |
||
30 | |||
31 | # pylint: disable=no-name-in-module |
||
32 | |||
33 | import matplotlib.pylab as plt |
||
34 | import numpy as np |
||
35 | import pandas as pd |
||
36 | from scipy.spatial import Delaunay |
||
37 | |||
38 | from ethically.fairness.metrics.visualization import plot_roc_curves |
||
39 | |||
40 | |||
41 | def _ternary_search_float(f, left, right, tol): |
||
42 | """Trinary search: minimize f(x) over [left, right], to within +/-tol in x. |
||
43 | |||
44 | Works assuming f is quasiconvex. |
||
45 | |||
46 | """ |
||
47 | while right - left > tol: |
||
48 | left_third = (2 * left + right) / 3 |
||
49 | right_third = (left + 2 * right) / 3 |
||
50 | if f(left_third) < f(right_third): |
||
51 | right = right_third |
||
52 | else: |
||
53 | left = left_third |
||
54 | return (right + left) / 2 |
||
55 | |||
56 | |||
57 | def _ternary_search_domain(f, domain): |
||
58 | """Trinary search: minimize f(x) over a domain (sequence). |
||
59 | |||
60 | Works assuming f is quasiconvex and domain is ascending sorted. |
||
61 | |||
62 | """ |
||
63 | left = 0 |
||
64 | right = len(domain) - 1 |
||
65 | changed = True |
||
66 | |||
67 | while changed and left != right: |
||
68 | |||
69 | changed = False |
||
70 | |||
71 | left_third = (2 * left + right) // 3 |
||
72 | right_third = (left + 2 * right) // 3 |
||
73 | |||
74 | if f(domain[left_third]) < f(domain[right_third]): |
||
75 | right = right_third - 1 |
||
76 | changed = True |
||
77 | else: |
||
78 | left = left_third + 1 |
||
79 | changed = True |
||
80 | |||
81 | return domain[(left + right) // 2] |
||
82 | |||
83 | |||
84 | def _cost_function(fpr, tpr, base_rate, cost_matrix): |
||
85 | """Compute the cost of given (fpr, tpr). |
||
86 | |||
87 | [[tn, fp], [fn, tp]] |
||
88 | """ |
||
89 | |||
90 | fp = fpr * (1 - base_rate) |
||
91 | tn = (1 - base_rate) - fp |
||
92 | tp = tpr * base_rate |
||
93 | fn = base_rate - tp |
||
94 | |||
95 | conf_matrix = np.array([tn, fp, fn, tp]) |
||
96 | |||
97 | return (conf_matrix * np.array(cost_matrix).ravel()).sum() |
||
98 | |||
99 | |||
100 | def _extract_threshold(roc_curves): |
||
101 | return next(iter(roc_curves.values()))[2] |
||
102 | |||
103 | |||
104 | def _first_index_above(array, value): |
||
105 | """Find the smallest index i for which array[i] > value. |
||
106 | |||
107 | If no such value exists, return len(array). |
||
108 | """ |
||
109 | array = np.array(array) |
||
110 | v = np.concatenate([array > value, np.ones_like(array[-1:])]) |
||
111 | return np.argmax(v, axis=0) |
||
112 | |||
113 | |||
114 | def _calc_acceptance_rate(fpr, tpr, base_rate): |
||
115 | return 1 - ((fpr * (1 - base_rate) |
||
116 | + tpr * base_rate)) |
||
117 | |||
118 | |||
119 | def find_single_threshold(roc_curves, base_rates, proportions, |
||
120 | cost_matrix): |
||
121 | """Compute single threshold that minimizes cost. |
||
122 | |||
123 | :param roc_curves: Receiver operating characteristic (ROC) |
||
124 | by attribute. |
||
125 | :type roc_curves: dict |
||
126 | :param base_rates: Base rate by attribute. |
||
127 | :type base_rates: dict |
||
128 | :param proportions: Proportion of each attribute value. |
||
129 | :type proportions: dict |
||
130 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
131 | :type cost_matrix: sequence |
||
132 | :return: Threshold, FPR and TPR by attribute and cost value. |
||
133 | :rtype: tuple |
||
134 | |||
135 | """ |
||
136 | |||
137 | def total_cost_function(index): |
||
138 | total_cost = 0 |
||
139 | |||
140 | for group, roc in roc_curves.items(): |
||
141 | fpr = roc[0][index] |
||
142 | tpr = roc[1][index] |
||
143 | |||
144 | group_cost = _cost_function(fpr, tpr, |
||
145 | base_rates[group], cost_matrix) |
||
146 | group_cost *= proportions[group] |
||
147 | |||
148 | total_cost += group_cost |
||
149 | |||
150 | return -total_cost |
||
151 | |||
152 | thresholds = _extract_threshold(roc_curves) |
||
153 | |||
154 | cutoff_index = _ternary_search_domain(total_cost_function, |
||
155 | range(len(thresholds))) |
||
156 | |||
157 | fpr_tpr = {group: (roc[0][cutoff_index], roc[1][cutoff_index]) |
||
158 | for group, roc in roc_curves.items()} |
||
159 | |||
160 | cost = total_cost_function(cutoff_index) |
||
161 | |||
162 | return thresholds[cutoff_index], fpr_tpr, cost |
||
163 | |||
164 | |||
165 | def find_min_cost_thresholds(roc_curves, base_rates, cost_matrix): |
||
166 | """Compute thresholds by attribute values that minimize cost. |
||
167 | |||
168 | :param roc_curves: Receiver operating characteristic (ROC) |
||
169 | by attribute. |
||
170 | :type roc_curves: dict |
||
171 | :param base_rates: Base rate by attribute. |
||
172 | :type base_rates: dict |
||
173 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
174 | :type cost_matrix: sequence |
||
175 | :return: Thresholds, FPR and TPR by attribute and cost value. |
||
176 | :rtype: tuple |
||
177 | |||
178 | """ |
||
179 | # pylint: disable=cell-var-from-loop |
||
180 | |||
181 | cutoffs = {} |
||
182 | fpr_tpr = {} |
||
183 | |||
184 | cost = 0 |
||
185 | thresholds = _extract_threshold(roc_curves) |
||
186 | |||
187 | for group, roc in roc_curves.items(): |
||
188 | def group_cost_function(index): |
||
189 | fpr = roc[0][index] |
||
190 | tpr = roc[1][index] |
||
191 | return -_cost_function(fpr, tpr, |
||
192 | base_rates[group], cost_matrix) |
||
193 | |||
194 | threshold_index = _ternary_search_domain(group_cost_function, |
||
195 | range(len(thresholds))) |
||
196 | |||
197 | cutoffs[group] = thresholds[threshold_index] |
||
198 | |||
199 | fpr_tpr[group] = (roc[0][threshold_index], |
||
200 | roc[1][threshold_index]) |
||
201 | |||
202 | cost += group_cost_function(threshold_index) |
||
203 | |||
204 | return cutoffs, fpr_tpr, cost |
||
205 | |||
206 | |||
207 | def get_acceptance_rate_indices(roc_curves, base_rates, |
||
208 | acceptance_rate_value): |
||
209 | indices = {} |
||
210 | for group, roc in roc_curves.items(): |
||
211 | # can be calculated outside the function |
||
212 | acceptance_rates = _calc_acceptance_rate(fpr=roc[0], |
||
213 | tpr=roc[1], |
||
214 | base_rate=base_rates[group]) |
||
215 | |||
216 | index = _first_index_above(acceptance_rates, |
||
217 | (1 - acceptance_rate_value)) - 2 |
||
218 | |||
219 | indices[group] = index |
||
220 | |||
221 | return indices |
||
222 | |||
223 | |||
224 | View Code Duplication | def find_independence_thresholds(roc_curves, base_rates, proportions, |
|
225 | cost_matrix): |
||
226 | """Compute thresholds that achieve independence and minimize cost. |
||
227 | |||
228 | :param roc_curves: Receiver operating characteristic (ROC) |
||
229 | by attribute. |
||
230 | :type roc_curves: dict |
||
231 | :param base_rates: Base rate by attribute. |
||
232 | :type base_rates: dict |
||
233 | :param proportions: Proportion of each attribute value. |
||
234 | :type proportions: dict |
||
235 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
236 | :type cost_matrix: sequence |
||
237 | :return: Thresholds, FPR and TPR by attribute and cost value. |
||
238 | :rtype: tuple |
||
239 | |||
240 | """ |
||
241 | |||
242 | cutoffs = {} |
||
243 | |||
244 | def total_cost_function(acceptance_rate_value): |
||
245 | # todo: move demo here + multiple cost |
||
246 | indices = get_acceptance_rate_indices(roc_curves, base_rates, |
||
247 | acceptance_rate_value) |
||
248 | |||
249 | total_cost = 0 |
||
250 | |||
251 | for group, roc in roc_curves.items(): |
||
252 | index = indices[group] |
||
253 | |||
254 | fpr = roc[0][index] |
||
255 | tpr = roc[1][index] |
||
256 | |||
257 | group_cost = _cost_function(fpr, tpr, |
||
258 | base_rates[group], |
||
259 | cost_matrix) |
||
260 | group_cost *= proportions[group] |
||
261 | |||
262 | total_cost += group_cost |
||
263 | |||
264 | return -total_cost |
||
265 | |||
266 | acceptance_rate_min_cost = _ternary_search_float(total_cost_function, |
||
267 | 0, 1, 1e-3) |
||
268 | threshold_indices = get_acceptance_rate_indices(roc_curves, base_rates, |
||
269 | acceptance_rate_min_cost) |
||
270 | |||
271 | thresholds = _extract_threshold(roc_curves) |
||
272 | |||
273 | cutoffs = {group: thresholds[threshold_index] |
||
274 | for group, threshold_index |
||
275 | in threshold_indices.items()} |
||
276 | |||
277 | fpr_tpr = {group: (roc[0][threshold_indices[group]], |
||
278 | roc[1][threshold_indices[group]]) |
||
279 | for group, roc in roc_curves.items()} |
||
280 | |||
281 | return cutoffs, fpr_tpr, acceptance_rate_min_cost |
||
282 | |||
283 | |||
284 | def get_fnr_indices(roc_curves, fnr_value): |
||
285 | indices = {} |
||
286 | for group, roc in roc_curves.items(): |
||
287 | tprs = roc[1] |
||
288 | index = _first_index_above(1 - tprs, |
||
289 | (1 - fnr_value)) - 1 |
||
290 | |||
291 | indices[group] = index |
||
292 | |||
293 | return indices |
||
294 | |||
295 | |||
296 | View Code Duplication | def find_fnr_thresholds(roc_curves, base_rates, proportions, |
|
|
|||
297 | cost_matrix): |
||
298 | """Compute thresholds that achieve equal FNRs and minimize cost. |
||
299 | |||
300 | Also known as **equal opportunity**. |
||
301 | |||
302 | :param roc_curves: Receiver operating characteristic (ROC) |
||
303 | by attribute. |
||
304 | :type roc_curves: dict |
||
305 | :param base_rates: Base rate by attribute. |
||
306 | :type base_rates: dict |
||
307 | :param proportions: Proportion of each attribute value. |
||
308 | :type proportions: dict |
||
309 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
310 | :type cost_matrix: sequence |
||
311 | :return: Thresholds, FPR and TPR by attribute and cost value. |
||
312 | :rtype: tuple |
||
313 | |||
314 | """ |
||
315 | |||
316 | cutoffs = {} |
||
317 | |||
318 | def total_cost_function(fnr_value): |
||
319 | # todo: move demo here + multiple cost |
||
320 | indices = get_fnr_indices(roc_curves, fnr_value) |
||
321 | |||
322 | total_cost = 0 |
||
323 | |||
324 | for group, roc in roc_curves.items(): |
||
325 | index = indices[group] |
||
326 | |||
327 | fpr = roc[0][index] |
||
328 | tpr = roc[1][index] |
||
329 | |||
330 | group_cost = _cost_function(fpr, tpr, |
||
331 | base_rates[group], |
||
332 | cost_matrix) |
||
333 | group_cost *= proportions[group] |
||
334 | |||
335 | total_cost += group_cost |
||
336 | |||
337 | return -total_cost |
||
338 | |||
339 | fnr_value_min_cost = _ternary_search_float(total_cost_function, |
||
340 | 0, 1, 1e-3) |
||
341 | threshold_indices = get_fnr_indices(roc_curves, fnr_value_min_cost) |
||
342 | |||
343 | cost = total_cost_function(fnr_value_min_cost) |
||
344 | |||
345 | fpr_tpr = {group: (roc[0][threshold_indices[group]], |
||
346 | roc[1][threshold_indices[group]]) |
||
347 | for group, roc in roc_curves.items()} |
||
348 | |||
349 | thresholds = _extract_threshold(roc_curves) |
||
350 | cutoffs = {group: thresholds[threshold_index] |
||
351 | for group, threshold_index |
||
352 | in threshold_indices.items()} |
||
353 | |||
354 | return cutoffs, fpr_tpr, cost, fnr_value_min_cost |
||
355 | |||
356 | |||
357 | def _find_feasible_roc(roc_curves): |
||
358 | polygons = [Delaunay(list(zip(fprs, tprs))) |
||
359 | for group, (fprs, tprs, _) in roc_curves.items()] |
||
360 | |||
361 | feasible_points = [] |
||
362 | |||
363 | for poly in polygons: |
||
364 | for p in poly.points: |
||
365 | |||
366 | if all(poly2.find_simplex(p) != -1 for poly2 in polygons): |
||
367 | feasible_points.append(p) |
||
368 | |||
369 | return np.array(feasible_points) |
||
370 | |||
371 | |||
372 | def find_separation_thresholds(roc_curves, base_rate, cost_matrix): |
||
373 | """Compute thresholds that achieve separation and minimize cost. |
||
374 | |||
375 | Also known as **equalized odds**. |
||
376 | |||
377 | :param roc_curves: Receiver operating characteristic (ROC) |
||
378 | by attribute. |
||
379 | :type roc_curves: dict |
||
380 | :param base_rate: Overall base rate. |
||
381 | :type base_rate: float |
||
382 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
383 | :type cost_matrix: sequence |
||
384 | :return: Thresholds, FPR and TPR by attribute and cost value. |
||
385 | :rtype: tuple |
||
386 | |||
387 | """ |
||
388 | |||
389 | feasible_points = _find_feasible_roc(roc_curves) |
||
390 | |||
391 | cost, (best_fpr, best_tpr) = max((_cost_function(fpr, tpr, base_rate, |
||
392 | cost_matrix), |
||
393 | (fpr, tpr)) |
||
394 | for fpr, tpr in feasible_points) |
||
395 | |||
396 | return {}, {'': (best_fpr, best_tpr)}, cost |
||
397 | |||
398 | |||
399 | def find_thresholds(roc_curves, proportions, base_rate, |
||
400 | base_rates, cost_matrix, |
||
401 | with_single=True, with_min_cost=True, |
||
402 | with_independence=True, with_fnr=True, |
||
403 | with_separation=True): |
||
404 | """Compute thresholds that achieve various criteria and minimize cost. |
||
405 | |||
406 | :param roc_curves: Receiver operating characteristic (ROC) |
||
407 | by attribute. |
||
408 | :type roc_curves: dict |
||
409 | :param proportions: Proportion of each attribute value. |
||
410 | :type proportions: dict |
||
411 | :param base_rate: Overall base rate. |
||
412 | :type base_rate: float |
||
413 | :param base_rates: Base rate by attribute. |
||
414 | :type base_rates: dict |
||
415 | :param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]]. |
||
416 | :type cost_matrix: sequence |
||
417 | |||
418 | :param with_single: Compute single threshold. |
||
419 | :type with_single: bool |
||
420 | :param with_min_cost: Compute minimum cost thresholds. |
||
421 | :type with_min_cost: bool |
||
422 | :param with_independence: Compute independence thresholds. |
||
423 | :type with_independence: bool |
||
424 | :param with_fnr: Compute FNR thresholds. |
||
425 | :type with_fnr: bool |
||
426 | :param with_separation: Compute separation thresholds. |
||
427 | :type with_separation: bool |
||
428 | |||
429 | :return: Dictionary of threshold criteria, |
||
430 | and for each criterion: |
||
431 | thresholds, FPR and TPR by attribute and cost value. |
||
432 | :rtype: dict |
||
433 | |||
434 | """ |
||
435 | |||
436 | thresholds = {} |
||
437 | |||
438 | if with_single: |
||
439 | thresholds['single'] = find_single_threshold(roc_curves, |
||
440 | base_rates, |
||
441 | proportions, |
||
442 | cost_matrix) |
||
443 | |||
444 | if with_min_cost: |
||
445 | thresholds['min_cost'] = find_min_cost_thresholds(roc_curves, |
||
446 | base_rates, |
||
447 | cost_matrix) |
||
448 | |||
449 | if with_independence: |
||
450 | thresholds['independence'] = find_independence_thresholds(roc_curves, |
||
451 | base_rates, |
||
452 | proportions, |
||
453 | cost_matrix) |
||
454 | |||
455 | if with_fnr: |
||
456 | thresholds['fnr'] = find_fnr_thresholds(roc_curves, |
||
457 | base_rates, |
||
458 | proportions, |
||
459 | cost_matrix) |
||
460 | |||
461 | if with_separation: |
||
462 | thresholds['separation'] = find_separation_thresholds(roc_curves, |
||
463 | base_rate, |
||
464 | cost_matrix) |
||
465 | |||
466 | return thresholds |
||
467 | |||
468 | |||
469 | def plot_roc_curves_thresholds(roc_curves, thresholds_data, |
||
470 | aucs=None, |
||
471 | title='ROC Curves by Attribute', |
||
472 | ax=None, figsize=None, |
||
473 | title_fontsize='large', |
||
474 | text_fontsize='medium'): |
||
475 | """Generate the ROC curves by attribute with thresholds. |
||
476 | |||
477 | Based on :func:`skplt.metrics.plot_roc` |
||
478 | |||
479 | :param roc_curves: Receiver operating characteristic (ROC) |
||
480 | by attribute. |
||
481 | :type roc_curves: dict |
||
482 | :param thresholds_data: Thresholds by attribute from the |
||
483 | function |
||
484 | :func:`~ethically.interventions |
||
485 | .threshold.find_thresholds`. |
||
486 | :type thresholds_data: dict |
||
487 | :param aucs: Area Under the ROC (AUC) by attribute. |
||
488 | :type aucs: dict |
||
489 | :param str title: Title of the generated plot. |
||
490 | :param ax: The axes upon which to plot the curve. |
||
491 | If `None`, the plot is drawn on a new set of axes. |
||
492 | :param tuple figsize: Tuple denoting figure size of the plot |
||
493 | e.g. (6, 6). |
||
494 | :param title_fontsize: Matplotlib-style fontsizes. |
||
495 | Use e.g. 'small', 'medium', 'large' |
||
496 | or integer-values. |
||
497 | :param text_fontsize: Matplotlib-style fontsizes. |
||
498 | Use e.g. 'small', 'medium', 'large' |
||
499 | or integer-values. |
||
500 | :return: The axes on which the plot was drawn. |
||
501 | :rtype: :class:`matplotlib.axes.Axes` |
||
502 | |||
503 | """ |
||
504 | |||
505 | ax = plot_roc_curves(roc_curves, aucs, |
||
506 | title, ax, figsize, title_fontsize, text_fontsize) |
||
507 | |||
508 | MARKERS = ['o', '^', 'x', '+', 'p'] |
||
509 | |||
510 | for (name, data), marker in zip(thresholds_data.items(), MARKERS): |
||
511 | label = name.replace('_', ' ').title() |
||
512 | ax.scatter(*zip(*data[1].values()), |
||
513 | marker=marker, color='k', label=label, |
||
514 | zorder=float('inf')) |
||
515 | |||
516 | plt.legend() |
||
517 | |||
518 | return ax |
||
519 | |||
520 | |||
521 | def plot_fpt_tpr(roc_curves, |
||
522 | title='FPR-TPR Curves by Attribute', |
||
523 | ax=None, figsize=None, |
||
524 | title_fontsize='large', text_fontsize='medium'): |
||
525 | """Generate FPR and TPR curves by thresholds and by attribute. |
||
526 | |||
527 | Based on :func:`skplt.metrics.plot_roc` |
||
528 | |||
529 | :param roc_curves: Receiver operating characteristic (ROC) |
||
530 | by attribute. |
||
531 | :type roc_curves: dict |
||
532 | :param str title: Title of the generated plot. |
||
533 | :param ax: The axes upon which to plot the curve. |
||
534 | If `None`, the plot is drawn on a new set of axes. |
||
535 | :param tuple figsize: Tuple denoting figure size of the plot |
||
536 | e.g. (6, 6). |
||
537 | :param title_fontsize: Matplotlib-style fontsizes. |
||
538 | Use e.g. 'small', 'medium', 'large' |
||
539 | or integer-values. |
||
540 | :param text_fontsize: Matplotlib-style fontsizes. |
||
541 | Use e.g. 'small', 'medium', 'large' |
||
542 | or integer-values. |
||
543 | :return: The axes on which the plot was drawn. |
||
544 | :rtype: :class:`matplotlib.axes.Axes` |
||
545 | |||
546 | """ |
||
547 | |||
548 | if ax is None: |
||
549 | fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable |
||
550 | |||
551 | ax.set_title(title, fontsize=title_fontsize) |
||
552 | |||
553 | thresholds = _extract_threshold(roc_curves) |
||
554 | |||
555 | prop_cycle = plt.rcParams['axes.prop_cycle'] |
||
556 | colors = prop_cycle.by_key()['color'] |
||
557 | |||
558 | for (group, roc), color in zip(roc_curves.items(), colors): |
||
559 | plt.plot(thresholds, roc[0], '-', |
||
560 | label='{} - FPR'.format(group), color=color) |
||
561 | plt.plot(thresholds, roc[1], '--', |
||
562 | label='{} - TPR'.format(group), color=color) |
||
563 | plt.legend() |
||
564 | |||
565 | ax.set_ylim([0.0, 1.05]) |
||
566 | ax.set_xlabel('Threshold', fontsize=text_fontsize) |
||
567 | ax.set_ylabel('Probability', fontsize=text_fontsize) |
||
568 | ax.tick_params(labelsize=text_fontsize) |
||
569 | ax.legend(fontsize=text_fontsize) |
||
570 | |||
571 | return ax |
||
572 | |||
573 | |||
574 | def plot_costs(thresholds_data, |
||
575 | title='Cost by Threshold', |
||
576 | ax=None, figsize=None, |
||
577 | title_fontsize='large', text_fontsize='medium'): |
||
578 | """Plot cost by threshold definition and by attribute. |
||
579 | |||
580 | Based on :func:`skplt.metrics.plot_roc` |
||
581 | |||
582 | :param thresholds_data: Thresholds by attribute from the |
||
583 | function |
||
584 | :func:`~ethically.interventions |
||
585 | .threshold.find_thresholds`. |
||
586 | :type thresholds_data: dict |
||
587 | :param str title: Title of the generated plot. |
||
588 | :param ax: The axes upon which to plot the curve. |
||
589 | If `None`, the plot is drawn on a new set of axes. |
||
590 | :param tuple figsize: Tuple denoting figure size of the plot |
||
591 | e.g. (6, 6). |
||
592 | :param title_fontsize: Matplotlib-style fontsizes. |
||
593 | Use e.g. 'small', 'medium', 'large' |
||
594 | or integer-values. |
||
595 | :param text_fontsize: Matplotlib-style fontsizes. |
||
596 | Use e.g. 'small', 'medium', 'large' |
||
597 | or integer-values. |
||
598 | :return: The axes on which the plot was drawn. |
||
599 | :rtype: :class:`matplotlib.axes.Axes` |
||
600 | |||
601 | """ |
||
602 | |||
603 | if ax is None: |
||
604 | fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable |
||
605 | |||
606 | ax.set_title(title, fontsize=title_fontsize) |
||
607 | |||
608 | costs = {group.replace('_', ' ').title(): cost |
||
609 | for group, (_, _, cost, *_) in thresholds_data.items()} |
||
610 | |||
611 | (pd.Series(costs) |
||
612 | .sort_values(ascending=False) |
||
613 | .plot(kind='barh', ax=ax)) |
||
614 | |||
615 | ax.set_xlabel('Cost', fontsize=text_fontsize) |
||
616 | ax.set_ylabel('Threshold', fontsize=text_fontsize) |
||
617 | ax.tick_params(labelsize=text_fontsize) |
||
618 | |||
619 | return ax |
||
620 |