1
|
|
|
""" |
2
|
|
|
Evaluate words embeedings by standard benchmarks. |
3
|
|
|
|
4
|
|
|
Reference: https://github.com/kudkudak/word-embeddings-benchmarks |
5
|
|
|
|
6
|
|
|
|
7
|
|
|
Word Pairs Tasks |
8
|
|
|
|
9
|
|
|
1. The WordSimilarity-353 Test Collection |
10
|
|
|
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/ |
11
|
|
|
|
12
|
|
|
2. Rubenstein, H., and Goodenough, J. 1965. Contextual correlates of synonymy |
13
|
|
|
https://www.seas.upenn.edu/~hansens/conceptSim/ |
14
|
|
|
|
15
|
|
|
3. Stanford Rare Word (RW) Similarity Dataset |
16
|
|
|
https://nlp.stanford.edu/~lmthang/morphoNLM/ |
17
|
|
|
|
18
|
|
|
4. The Word Relatedness Mturk-771 Test Collection |
19
|
|
|
http://www2.mta.ac.il/~gideon/datasets/mturk_771.html |
20
|
|
|
|
21
|
|
|
5. The MEN Test Collection |
22
|
|
|
http://clic.cimec.unitn.it/~elia.bruni/MEN.html |
23
|
|
|
|
24
|
|
|
6. SimLex-999 |
25
|
|
|
https://fh295.github.io/simlex.html |
26
|
|
|
|
27
|
|
|
7. TR9856 |
28
|
|
|
https://www.research.ibm.com/haifa/dept/vst/files/IBM_Debater_(R)_TR9856.v2.zip |
29
|
|
|
|
30
|
|
|
|
31
|
|
|
Analogies Tasks |
32
|
|
|
|
33
|
|
|
1. Google Analogies (subset of WordRep) |
34
|
|
|
https://code.google.com/archive/p/word2vec/source |
35
|
|
|
|
36
|
|
|
2. MSR - Syntactic Analogies |
37
|
|
|
http://research.microsoft.com/en-us/projects/rnn/ |
38
|
|
|
|
39
|
|
|
""" |
40
|
|
|
|
41
|
|
|
import os |
42
|
|
|
import warnings |
43
|
|
|
|
44
|
|
|
import pandas as pd |
45
|
|
|
from pkg_resources import resource_filename |
46
|
|
|
|
47
|
|
|
|
48
|
|
|
with warnings.catch_warnings(): |
49
|
|
|
warnings.simplefilter('ignore', category=FutureWarning) |
50
|
|
|
|
51
|
|
|
|
52
|
|
|
WORD_PAIRS_TASKS = {'WS353': 'wordsim353.tsv', |
53
|
|
|
'RG65': 'RG_word.tsv', |
54
|
|
|
'RW': 'rw.tsv', |
55
|
|
|
'Mturk': 'MTURK-771.tsv', |
56
|
|
|
'MEN': 'MEN_dataset_natural_form_full.tsv', |
57
|
|
|
'SimLex999': 'SimLex-999.tsv', |
58
|
|
|
'TR9856': 'TermRelatednessResults.tsv'} |
59
|
|
|
|
60
|
|
|
ANALOGIES_TASKS = {'MSR-syntax': 'MSR-syntax.txt', |
61
|
|
|
'Google': 'questions-words.txt'} |
62
|
|
|
|
63
|
|
|
PAIR_WORDS_EVALUATION_FIELDS = ['pearson_r', 'pearson_pvalue', |
64
|
|
|
'spearman_r', 'spearman_pvalue', |
65
|
|
|
'ratio_unkonwn_words'] |
66
|
|
|
|
67
|
|
|
|
68
|
|
|
def get_data_resource_path(filename): |
69
|
|
|
return resource_filename(__name__, os.path.join('data', |
70
|
|
|
'benchmark', |
71
|
|
|
filename)) |
72
|
|
|
|
73
|
|
|
|
74
|
|
|
def prepare_word_pairs_file(src, dst, delimiter='\t'): |
75
|
|
|
"""Transform formats of word pairs files to tsv.""" |
76
|
|
|
df = pd.read_csv(src, header=None, delimiter=delimiter) |
77
|
|
|
df.loc[:, :2].to_csv(dst, sep=delimiter, index=False, header=False) |
78
|
|
|
|
79
|
|
|
|
80
|
|
|
def evaluate_word_pairs(model, kwargs_word_pairs=None): |
81
|
|
|
""" |
82
|
|
|
Evaluate word pairs tasks. |
83
|
|
|
|
84
|
|
|
:param model: Words embedding. |
85
|
|
|
:param kwargs_word_pairs: Kwargs for |
86
|
|
|
evaluate_word_pairs |
87
|
|
|
method. |
88
|
|
|
:type kwargs_word_pairs: dict or None |
89
|
|
|
:return: DataFrame of evaluation results. |
90
|
|
|
""" |
91
|
|
|
|
92
|
|
|
if kwargs_word_pairs is None: |
93
|
|
|
kwargs_word_pairs = {} |
94
|
|
|
|
95
|
|
|
results = {} |
96
|
|
|
|
97
|
|
|
for name, filename in WORD_PAIRS_TASKS.items(): |
98
|
|
|
path = get_data_resource_path(filename) |
99
|
|
|
(pearson, |
100
|
|
|
spearman, |
101
|
|
|
ratio_unknown_words) = model.evaluate_word_pairs(path, |
102
|
|
|
**kwargs_word_pairs) # pylint: disable=C0301 |
103
|
|
|
|
104
|
|
|
results[name] = {'pearson_r': pearson[0], |
105
|
|
|
'pearson_pvalue': pearson[1], |
106
|
|
|
'spearman_r': spearman.correlation, |
107
|
|
|
'spearman_pvalue': spearman.pvalue, |
108
|
|
|
'ratio_unkonwn_words': ratio_unknown_words} |
109
|
|
|
|
110
|
|
|
df = (pd.DataFrame(results) |
111
|
|
|
.reindex(PAIR_WORDS_EVALUATION_FIELDS) |
112
|
|
|
.transpose() |
113
|
|
|
.round(3)) |
114
|
|
|
|
115
|
|
|
return df |
116
|
|
|
|
117
|
|
|
|
118
|
|
|
def evaluate_word_analogies(model, kwargs_word_analogies=None): |
119
|
|
|
""" |
120
|
|
|
Evaluate word analogies tasks. |
121
|
|
|
|
122
|
|
|
:param model: Words embedding. |
123
|
|
|
:param kwargs_word_analogies: Kwargs for |
124
|
|
|
evaluate_word_analogies |
125
|
|
|
method. |
126
|
|
|
:type evaluate_word_analogies: dict or None |
127
|
|
|
:return: DataFrame of evaluation results. |
128
|
|
|
""" |
129
|
|
|
|
130
|
|
|
if kwargs_word_analogies is None: |
131
|
|
|
kwargs_word_analogies = {} |
132
|
|
|
|
133
|
|
|
results = {} |
134
|
|
|
|
135
|
|
|
for name, filename in ANALOGIES_TASKS.items(): |
136
|
|
|
path = get_data_resource_path(filename) |
137
|
|
|
overall_score, _ = model.evaluate_word_analogies(path, |
138
|
|
|
**kwargs_word_analogies) # pylint: disable=C0301 |
139
|
|
|
|
140
|
|
|
results[name] = {'score': overall_score} |
141
|
|
|
|
142
|
|
|
df = (pd.DataFrame(results) |
143
|
|
|
.transpose() |
144
|
|
|
.round(3)) |
145
|
|
|
|
146
|
|
|
return df |
|
|
|
|
147
|
|
|
|
148
|
|
|
|
149
|
|
|
def evaluate_words_embedding(model, |
150
|
|
|
kwargs_word_pairs=None, |
151
|
|
|
kwargs_word_analogies=None): |
152
|
|
|
""" |
153
|
|
|
Evaluate word pairs tasks and word analogies tasks. |
154
|
|
|
|
155
|
|
|
:param model: Words embedding. |
156
|
|
|
:param kwargs_word_pairs: Kwargs fo |
157
|
|
|
evaluate_word_pairs |
158
|
|
|
method. |
159
|
|
|
:type kwargs_word_pairs: dict or None |
160
|
|
|
:param kwargs_word_analogies: Kwargs for |
161
|
|
|
evaluate_word_analogies |
162
|
|
|
method. |
163
|
|
|
:type evaluate_word_analogies: dict or None |
164
|
|
|
:return: Tuple of DataFrame for the evaluation results. |
165
|
|
|
""" |
166
|
|
|
return (evaluate_word_pairs(model, kwargs_word_pairs), |
167
|
|
|
evaluate_word_analogies(model, kwargs_word_analogies)) |
168
|
|
|
|