Passed
Push — master ( 47e1d1...83e87b )
by Jeremy
01:40
created

vit_model.Mlp.forward()   A

Complexity

Conditions 1

Size

Total Lines 7
Code Lines 7

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 7
nop 2
dl 0
loc 7
rs 10
c 0
b 0
f 0
1
from functools import partial
2
3
import torch
4
import torch.nn as nn
5
from timm.layers import DropPath
6
7
8
class PatchEmbed(nn.Module):
9
    def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):
10
        # img_size图像大小   patch_size每个图像块patch的大小  in_c 输入通道  embed_dim 嵌入维度  norm_layer 可选的归一化层
11
        super().__init__()
12
        img_size = (img_size, img_size)   # 将输入图像大小变为二维元组
13
        patch_size = (patch_size, patch_size)
14
        self.img_size = img_size
15
        self.patch_size = patch_size
16
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])  # 224/16, 224/16  以patch为单位形成的新“图像”尺寸
17
        self.num_patches = self.grid_size[0] * self.grid_size[1]  # 14*14=196 patch总数
18
19
        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size) # 利用一个卷积核为16*16,步长为16大小进行卷积操作来等效实现将原图拆分成patch   B, 3, 224, 224 -> B, 768, 14, 14
20
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()  # 若存在norm layer则使用,否则保持不变
21
22
    def forward(self, x):
23
        B, C, H, W = x.shape   # 获取输入张量的形状
24
        assert H == self.img_size[0] and W == self.img_size[1],\
25
        f"输入图像大小{H} * {W}与模型期望大小{self.img_size[0]}*{self.img_size[1]}不匹配"
26
        # B, 3, 224, 224 -> B, 768, 14, 14 -> B, 768, 196 -> B, 196, 768
27
        x = self.proj(x).flatten(2).transpose(1, 2)
28
        x = self.norm(x) # 使用norm层进行归一化
29
        return x
30
31
32
33
34
class Attention(nn.Module):
35
    # dim输入的token维度768, num_heads注意力头数,qkv_bias生成QKV的时候是否添加偏置,
36
    # qk_scale用于缩放QK的缩放因子,若为None,则使用1/sqrt(embed_dim_pre_head)
37
    # atte_drop_ration注意力分数的dropout的比率,防止过拟合  proj_drop_ration最终投影层的dropout的比率
38
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, atte_drop_ration=0., proj_drop_ration=0.):
39
        super().__init__()
40
        self.num_heads = num_heads
41
        head_dim = dim // num_heads # 每个注意力头的维度
42
        self.scale = qk_scale or head_dim ** -0.5  # qk的缩放因子
43
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) # 通过全连接层生成QKV,为了并行运算提高计算效率,同时参数更少
44
        self.attn_drop = nn.Dropout(atte_drop_ration)
45
        self.proj_drop = nn.Dropout(proj_drop_ration)
46
        # 将每个head得到的输出进行concat拼接,然后通过线性变换映射回原本的嵌入dim
47
        self.proj = nn.Linear(dim, dim, bias=qkv_bias)
48
49
    def forward(self, x):
50
        B, N, C = x.shape  # B为batch,N为num_patch+1,C为embed_dim  +1为clstoken
51
        #  B N 3*C -> B N 3 num_heads, C//self.num_heads -> 3 B num_heads N C//self.num_heads  作用是方便之后的运算
52
        qkv = self.qkv(x).reshape(B,N,3,self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
53
        # 用切片拿到QKV,形状是 B num_heads N C//self.num_heads
54
        q, k, v = qkv[0], qkv[1], qkv[2]
55
        # 计算qk的点积,并进行缩放得到注意力分数
56
        # Q: [3 B num_heads N C//self.num_heads] k.transpose(-2,-1)  K:[B num_heads C//self.num_heads N]
57
        attn = (q @ k.transpose(-2, -1)) * self.scale  # B num_heads N N
58
        attn = attn.softmax(dim=-1) # 对每行进行处理 使得每行的和为1
59
        # 注意力权重对V进行加权求和
60
        # attn @ v : B num_heads N C//self.num_heads
61
        # transpose: B N self.num_heads C//self.num_heads
62
        # reshape将最后两个维度拼接,合并多个头的输出,回到总的嵌入维度
63
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
64
        x = self.proj(x)
65
        x = self.proj_drop(x)
66
67
        return x
68
69
70
71
72
class Mlp(nn.Module):
73
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
74
        # in_features输入的维度, hidden_features隐藏层维度、通常为in_features的4倍, out_features输出维度、通常与输入维度相等
75
        super().__init__()
76
        out_features = out_features or in_features
77
        hidden_features = hidden_features or in_features
78
        self.fc1 = nn.Linear(in_features, hidden_features)
79
        self.act = act_layer()
80
        self.fc2 = nn.Linear(hidden_features, out_features)
81
        self.drop = nn.Dropout(drop)
82
83
    def forward(self, x):
84
        x = self.fc1(x)
85
        x = self.act(x)
86
        x = self.drop(x)
87
        x = self.fc2(x)
88
        x = self.drop(x)
89
        return x
90
91
92
93
94
95
class Block(nn.Module):
96
    # mlp_ratio 计算hidden_features大小 默认为输入4倍   norm_layer正则化层
97
    # drop_path_ratio 是drop_path的比率,该操作在残差连接之前  drop_ratio 是多头自注意力机制最后的linear后使用的dropout
98
99
    def __init__(self, dim, num_heads, mlp_ratio=4, qkv_bias=False, qk_scale=None, drop_ratio=0.,
100
                 attn_drop_ratio=0., drop_path_ratio=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
101
        super(Block, self).__init__()
102
        self.norm1 = norm_layer(dim)  # transformer encoder block中的第一个layer norm
103
        # 实例化多头注意力机制
104
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
105
                              atte_drop_ration=attn_drop_ratio, proj_drop_ration=drop_path_ratio)
106
        self.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0 else nn.Identity()
107
        self.norm2 = norm_layer(dim)
108
        mlp_hidden_dim = int(dim * mlp_ratio)  # 计算MLP第一个全连接层的节点数
109
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)
110
111
    def forward(self, x):
112
        x = x + self.drop_path(self.attn(self.norm1(x)))
113
        x = x + self.drop_path(self.mlp(self.norm2(x)))
114
        return x
115
116
117
118
class VisionTransformer(nn.Module):
119
    def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,
120
                 embed_dim=768, depth=12, num_heads=12,mlp_ratio=4., qkv_bias=True, qk_scale=None,
121
                 representation_size=None, distilled=False, drop_ratio=0.,
122
                 attn_drop_ratio=0., drop_path_ratio=0. , embed_layer=PatchEmbed ,norm_layer=None,
123
                 act_layer=None):
124
        super(VisionTransformer, self).__init__()
125
        self.num_classes = num_classes
126
        self.num_features = self.embed_dim = embed_dim
127
        self.num_tokens = 2 if distilled else 1
128
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
129
130
131
132