Conditions | 15 |
Total Lines | 82 |
Code Lines | 32 |
Lines | 0 |
Ratio | 0 % |
Tests | 27 |
CRAP Score | 15.225 |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like etlt.helper.Type2CondenseHelper.Type2CondenseHelper._distinct() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | 1 | from typing import Any, Dict, List, Optional, Set, Tuple |
|
16 | @staticmethod |
||
17 | def _distinct(row1: Tuple[int, int], row2: Tuple[int, int]) -> Optional[List[Tuple[int, int]]]: |
||
18 | """ |
||
19 | Returns a list of distinct (or none overlapping) intervals if two intervals are overlapping. Returns None if |
||
20 | the two intervals are none overlapping. The list can have 2 or 3 intervals. |
||
21 | |||
22 | :param row1: The first interval. |
||
23 | :param row2: The second interval. |
||
24 | """ |
||
25 | 1 | relation = Allen.relation(row1[0], row1[1], row2[0], row2[1]) |
|
26 | |||
27 | 1 | if relation is None: |
|
28 | # One of the 2 intervals is invalid. |
||
29 | return [] |
||
30 | |||
31 | 1 | if relation == Allen.X_BEFORE_Y: |
|
32 | # row1: |----| |
||
33 | # row2: |-----| |
||
34 | 1 | return None # [(row1[0], row1[1]), (row2[0], row2[1])] |
|
35 | |||
36 | 1 | if relation == Allen.X_BEFORE_Y_INVERSE: |
|
37 | # row1: |-----| |
||
38 | # row2: |----| |
||
39 | 1 | return None # [(row2[0], row2[1]), (row1[0], row1[1])] |
|
40 | |||
41 | 1 | if relation == Allen.X_MEETS_Y: |
|
42 | # row1: |-------| |
||
43 | # row2: |-------| |
||
44 | 1 | return None # [(row1[0], row1[1]), (row2[0], row2[1])] |
|
45 | |||
46 | 1 | if relation == Allen.X_MEETS_Y_INVERSE: |
|
47 | # row1: |-------| |
||
48 | # row2: |-------| |
||
49 | 1 | return None # [(row2[0], row2[1]), (row1[0], row1[1])] |
|
50 | |||
51 | 1 | if relation == Allen.X_OVERLAPS_WITH_Y: |
|
52 | # row1: |-----------| |
||
53 | # row2: |----------| |
||
54 | 1 | return [(row1[0], row2[0] - 1), (row2[0], row1[1]), (row1[1] + 1, row2[1])] |
|
55 | |||
56 | 1 | if relation == Allen.X_OVERLAPS_WITH_Y_INVERSE: |
|
57 | # row1: |----------| |
||
58 | # row2: |-----------| |
||
59 | 1 | return [(row2[0], row1[0] - 1), (row1[0], row2[1]), (row2[1] + 1, row1[1])] |
|
60 | |||
61 | 1 | if relation == Allen.X_STARTS_Y: |
|
62 | # row1: |------| |
||
63 | # row2: |----------------| |
||
64 | return [(row1[0], row1[1]), (row1[1] + 1, row2[1])] |
||
65 | |||
66 | 1 | if relation == Allen.X_STARTS_Y_INVERSE: |
|
67 | # row1: |----------------| |
||
68 | # row2: |------| |
||
69 | 1 | return [(row2[0], row2[1]), (row2[1] + 1, row1[1])] |
|
70 | |||
71 | 1 | if relation == Allen.X_DURING_Y: |
|
72 | # row1: |------| |
||
73 | # row2: |----------------| |
||
74 | 1 | return [(row2[0], row1[0] - 1), (row1[0], row1[1]), (row1[1] + 1, row2[1])] |
|
75 | |||
76 | 1 | if relation == Allen.X_DURING_Y_INVERSE: |
|
77 | # row1: |----------------| |
||
78 | # row2: |------| |
||
79 | 1 | return [(row1[0], row2[0] - 1), (row2[0], row2[1]), (row2[1] + 1, row1[1])] |
|
80 | |||
81 | 1 | if relation == Allen.X_FINISHES_Y: |
|
82 | # row1: |------| |
||
83 | # row2: |----------------| |
||
84 | 1 | return [(row2[0], row1[0] - 1), (row1[0], row1[1])] |
|
85 | |||
86 | 1 | if relation == Allen.X_FINISHES_Y_INVERSE: |
|
87 | # row1: |----------------| |
||
88 | # row2: |------| |
||
89 | 1 | return [(row1[0], row2[0] - 1), (row2[0], row2[1])] |
|
90 | |||
91 | 1 | if relation == Allen.X_EQUAL_Y: |
|
92 | # row1: |----------------| |
||
93 | # row2: |----------------| |
||
94 | 1 | return None # [(row1[0], row1[1])] |
|
95 | |||
96 | # We got all 13 relation in Allen's interval algebra covered. |
||
97 | raise ValueError('Unexpected relation {0}'.format(relation)) |
||
98 | |||
153 |