Total Complexity | 49 |
Total Lines | 455 |
Duplicated Lines | 0 % |
Coverage | 82.17% |
Changes | 0 |
Complex classes like BestFit often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use BestFit, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
5 | abstract class BestFit |
||
6 | { |
||
7 | /** |
||
8 | * Indicator flag for a calculation error. |
||
9 | * |
||
10 | * @var bool |
||
11 | */ |
||
12 | protected $error = false; |
||
13 | |||
14 | /** |
||
15 | * Algorithm type to use for best-fit. |
||
16 | * |
||
17 | * @var string |
||
18 | */ |
||
19 | protected $bestFitType = 'undetermined'; |
||
20 | |||
21 | /** |
||
22 | * Number of entries in the sets of x- and y-value arrays. |
||
23 | * |
||
24 | * @var int |
||
25 | */ |
||
26 | protected $valueCount = 0; |
||
27 | |||
28 | /** |
||
29 | * X-value dataseries of values. |
||
30 | * |
||
31 | * @var float[] |
||
32 | */ |
||
33 | protected $xValues = []; |
||
34 | |||
35 | /** |
||
36 | * Y-value dataseries of values. |
||
37 | * |
||
38 | * @var float[] |
||
39 | */ |
||
40 | protected $yValues = []; |
||
41 | |||
42 | /** |
||
43 | * Flag indicating whether values should be adjusted to Y=0. |
||
44 | * |
||
45 | * @var bool |
||
46 | */ |
||
47 | protected $adjustToZero = false; |
||
48 | |||
49 | /** |
||
50 | * Y-value series of best-fit values. |
||
51 | * |
||
52 | * @var float[] |
||
53 | */ |
||
54 | protected $yBestFitValues = []; |
||
55 | |||
56 | protected $goodnessOfFit = 1; |
||
57 | |||
58 | protected $stdevOfResiduals = 0; |
||
59 | |||
60 | protected $covariance = 0; |
||
61 | |||
62 | protected $correlation = 0; |
||
63 | |||
64 | protected $SSRegression = 0; |
||
65 | |||
66 | protected $SSResiduals = 0; |
||
67 | |||
68 | protected $DFResiduals = 0; |
||
69 | |||
70 | protected $f = 0; |
||
71 | |||
72 | protected $slope = 0; |
||
73 | |||
74 | protected $slopeSE = 0; |
||
75 | |||
76 | protected $intersect = 0; |
||
77 | |||
78 | protected $intersectSE = 0; |
||
79 | |||
80 | protected $xOffset = 0; |
||
81 | |||
82 | protected $yOffset = 0; |
||
83 | |||
84 | public function getError() |
||
85 | { |
||
86 | return $this->error; |
||
87 | } |
||
88 | |||
89 | public function getBestFitType() |
||
92 | } |
||
93 | |||
94 | /** |
||
95 | * Return the Y-Value for a specified value of X. |
||
96 | * |
||
97 | * @param float $xValue X-Value |
||
98 | * |
||
99 | * @return float Y-Value |
||
100 | */ |
||
101 | abstract public function getValueOfYForX($xValue); |
||
102 | |||
103 | /** |
||
104 | * Return the X-Value for a specified value of Y. |
||
105 | * |
||
106 | * @param float $yValue Y-Value |
||
107 | * |
||
108 | * @return float X-Value |
||
109 | */ |
||
110 | abstract public function getValueOfXForY($yValue); |
||
111 | |||
112 | /** |
||
113 | * Return the original set of X-Values. |
||
114 | * |
||
115 | * @return float[] X-Values |
||
116 | */ |
||
117 | 2 | public function getXValues() |
|
118 | { |
||
119 | 2 | return $this->xValues; |
|
120 | } |
||
121 | |||
122 | /** |
||
123 | * Return the Equation of the best-fit line. |
||
124 | * |
||
125 | * @param int $dp Number of places of decimal precision to display |
||
126 | * |
||
127 | * @return string |
||
128 | */ |
||
129 | abstract public function getEquation($dp = 0); |
||
130 | |||
131 | /** |
||
132 | * Return the Slope of the line. |
||
133 | * |
||
134 | * @param int $dp Number of places of decimal precision to display |
||
135 | * |
||
136 | * @return float |
||
137 | */ |
||
138 | 37 | public function getSlope($dp = 0) |
|
139 | { |
||
140 | 37 | if ($dp != 0) { |
|
141 | 2 | return round($this->slope, $dp); |
|
142 | } |
||
143 | |||
144 | 37 | return $this->slope; |
|
145 | } |
||
146 | |||
147 | /** |
||
148 | * Return the standard error of the Slope. |
||
149 | * |
||
150 | * @param int $dp Number of places of decimal precision to display |
||
151 | * |
||
152 | * @return float |
||
153 | */ |
||
154 | 3 | public function getSlopeSE($dp = 0) |
|
161 | } |
||
162 | |||
163 | /** |
||
164 | * Return the Value of X where it intersects Y = 0. |
||
165 | * |
||
166 | * @param int $dp Number of places of decimal precision to display |
||
167 | * |
||
168 | * @return float |
||
169 | */ |
||
170 | 36 | public function getIntersect($dp = 0) |
|
171 | { |
||
172 | 36 | if ($dp != 0) { |
|
173 | 2 | return round($this->intersect, $dp); |
|
174 | } |
||
175 | |||
176 | 36 | return $this->intersect; |
|
177 | } |
||
178 | |||
179 | /** |
||
180 | * Return the standard error of the Intersect. |
||
181 | * |
||
182 | * @param int $dp Number of places of decimal precision to display |
||
183 | * |
||
184 | * @return float |
||
185 | */ |
||
186 | 2 | public function getIntersectSE($dp = 0) |
|
187 | { |
||
188 | 2 | if ($dp != 0) { |
|
189 | return round($this->intersectSE, $dp); |
||
190 | } |
||
191 | |||
192 | 2 | return $this->intersectSE; |
|
193 | } |
||
194 | |||
195 | /** |
||
196 | * Return the goodness of fit for this regression. |
||
197 | * |
||
198 | * @param int $dp Number of places of decimal precision to return |
||
199 | * |
||
200 | * @return float |
||
201 | */ |
||
202 | 8 | public function getGoodnessOfFit($dp = 0) |
|
203 | { |
||
204 | 8 | if ($dp != 0) { |
|
205 | 3 | return round($this->goodnessOfFit, $dp); |
|
206 | } |
||
207 | |||
208 | 8 | return $this->goodnessOfFit; |
|
209 | } |
||
210 | |||
211 | /** |
||
212 | * Return the goodness of fit for this regression. |
||
213 | * |
||
214 | * @param int $dp Number of places of decimal precision to return |
||
215 | * |
||
216 | * @return float |
||
217 | */ |
||
218 | public function getGoodnessOfFitPercent($dp = 0) |
||
219 | { |
||
220 | if ($dp != 0) { |
||
221 | return round($this->goodnessOfFit * 100, $dp); |
||
222 | } |
||
223 | |||
224 | return $this->goodnessOfFit * 100; |
||
225 | } |
||
226 | |||
227 | /** |
||
228 | * Return the standard deviation of the residuals for this regression. |
||
229 | * |
||
230 | * @param int $dp Number of places of decimal precision to return |
||
231 | * |
||
232 | * @return float |
||
233 | */ |
||
234 | 5 | public function getStdevOfResiduals($dp = 0) |
|
235 | { |
||
236 | 5 | if ($dp != 0) { |
|
237 | return round($this->stdevOfResiduals, $dp); |
||
238 | } |
||
239 | |||
240 | 5 | return $this->stdevOfResiduals; |
|
241 | } |
||
242 | |||
243 | /** |
||
244 | * @param int $dp Number of places of decimal precision to return |
||
245 | * |
||
246 | * @return float |
||
247 | */ |
||
248 | 3 | public function getSSRegression($dp = 0) |
|
249 | { |
||
250 | 3 | if ($dp != 0) { |
|
251 | return round($this->SSRegression, $dp); |
||
252 | } |
||
253 | |||
254 | 3 | return $this->SSRegression; |
|
255 | } |
||
256 | |||
257 | /** |
||
258 | * @param int $dp Number of places of decimal precision to return |
||
259 | * |
||
260 | * @return float |
||
261 | */ |
||
262 | 3 | public function getSSResiduals($dp = 0) |
|
263 | { |
||
264 | 3 | if ($dp != 0) { |
|
265 | return round($this->SSResiduals, $dp); |
||
266 | } |
||
267 | |||
268 | 3 | return $this->SSResiduals; |
|
269 | } |
||
270 | |||
271 | /** |
||
272 | * @param int $dp Number of places of decimal precision to return |
||
273 | * |
||
274 | * @return float |
||
275 | */ |
||
276 | 3 | public function getDFResiduals($dp = 0) |
|
277 | { |
||
278 | 3 | if ($dp != 0) { |
|
279 | return round($this->DFResiduals, $dp); |
||
280 | } |
||
281 | |||
282 | 3 | return $this->DFResiduals; |
|
283 | } |
||
284 | |||
285 | /** |
||
286 | * @param int $dp Number of places of decimal precision to return |
||
287 | * |
||
288 | * @return float |
||
289 | */ |
||
290 | 3 | public function getF($dp = 0) |
|
291 | { |
||
292 | 3 | if ($dp != 0) { |
|
293 | return round($this->f, $dp); |
||
294 | } |
||
295 | |||
296 | 3 | return $this->f; |
|
297 | } |
||
298 | |||
299 | /** |
||
300 | * @param int $dp Number of places of decimal precision to return |
||
301 | * |
||
302 | * @return float |
||
303 | */ |
||
304 | 3 | public function getCovariance($dp = 0) |
|
305 | { |
||
306 | 3 | if ($dp != 0) { |
|
307 | return round($this->covariance, $dp); |
||
308 | } |
||
309 | |||
310 | 3 | return $this->covariance; |
|
311 | } |
||
312 | |||
313 | /** |
||
314 | * @param int $dp Number of places of decimal precision to return |
||
315 | * |
||
316 | * @return float |
||
317 | */ |
||
318 | 2 | public function getCorrelation($dp = 0) |
|
325 | } |
||
326 | |||
327 | /** |
||
328 | * @return float[] |
||
329 | */ |
||
330 | public function getYBestFitValues() |
||
331 | { |
||
332 | return $this->yBestFitValues; |
||
333 | } |
||
334 | |||
335 | 39 | protected function calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const): void |
|
336 | { |
||
337 | 39 | $SSres = $SScov = $SScor = $SStot = $SSsex = 0.0; |
|
|
|||
338 | 39 | foreach ($this->xValues as $xKey => $xValue) { |
|
339 | 39 | $bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue); |
|
340 | |||
341 | 39 | $SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY); |
|
342 | 39 | if ($const === true) { |
|
343 | 34 | $SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY); |
|
344 | } else { |
||
345 | 5 | $SStot += $this->yValues[$xKey] * $this->yValues[$xKey]; |
|
346 | } |
||
347 | 39 | $SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY); |
|
348 | 39 | if ($const === true) { |
|
349 | 34 | $SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX); |
|
350 | } else { |
||
351 | 5 | $SSsex += $this->xValues[$xKey] * $this->xValues[$xKey]; |
|
352 | } |
||
353 | } |
||
354 | |||
355 | 39 | $this->SSResiduals = $SSres; |
|
356 | 39 | $this->DFResiduals = $this->valueCount - 1 - ($const === true ? 1 : 0); |
|
357 | |||
358 | 39 | if ($this->DFResiduals == 0.0) { |
|
359 | 1 | $this->stdevOfResiduals = 0.0; |
|
360 | } else { |
||
361 | 38 | $this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals); |
|
362 | } |
||
363 | 39 | if (($SStot == 0.0) || ($SSres == $SStot)) { |
|
1 ignored issue
–
show
|
|||
364 | $this->goodnessOfFit = 1; |
||
365 | } else { |
||
366 | 39 | $this->goodnessOfFit = 1 - ($SSres / $SStot); |
|
367 | } |
||
368 | |||
369 | 39 | $this->SSRegression = $this->goodnessOfFit * $SStot; |
|
370 | 39 | $this->covariance = $SScov / $this->valueCount; |
|
371 | 39 | $this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - $sumX ** 2) * ($this->valueCount * $sumY2 - $sumY ** 2)); |
|
372 | 39 | $this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex); |
|
373 | 39 | $this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2)); |
|
374 | 39 | if ($this->SSResiduals != 0.0) { |
|
375 | 27 | if ($this->DFResiduals == 0.0) { |
|
376 | $this->f = 0.0; |
||
377 | } else { |
||
378 | 27 | $this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals); |
|
379 | } |
||
380 | } else { |
||
381 | 12 | if ($this->DFResiduals == 0.0) { |
|
382 | 1 | $this->f = 0.0; |
|
383 | } else { |
||
384 | 11 | $this->f = $this->SSRegression / $this->DFResiduals; |
|
385 | } |
||
386 | } |
||
387 | 39 | } |
|
388 | |||
389 | 39 | private function sumSquares(array $values) |
|
390 | { |
||
391 | 39 | return array_sum( |
|
392 | 39 | array_map( |
|
393 | 39 | function ($value) { |
|
394 | 39 | return $value ** 2; |
|
395 | 39 | }, |
|
396 | $values |
||
397 | ) |
||
398 | ); |
||
399 | } |
||
400 | |||
401 | /** |
||
402 | * @param float[] $yValues |
||
403 | * @param float[] $xValues |
||
404 | */ |
||
405 | 39 | protected function leastSquareFit(array $yValues, array $xValues, bool $const): void |
|
435 | 39 | } |
|
436 | |||
437 | /** |
||
438 | * Define the regression. |
||
439 | * |
||
440 | * @param float[] $yValues The set of Y-values for this regression |
||
441 | * @param float[] $xValues The set of X-values for this regression |
||
442 | */ |
||
443 | 39 | public function __construct($yValues, $xValues = []) |
|
444 | { |
||
445 | // Calculate number of points |
||
446 | 39 | $yValueCount = count($yValues); |
|
460 | 39 | } |
|
461 | } |
||
462 |