Total Complexity | 49 |
Total Lines | 479 |
Duplicated Lines | 0 % |
Coverage | 82.4% |
Changes | 0 |
Complex classes like BestFit often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use BestFit, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
5 | abstract class BestFit |
||
6 | { |
||
7 | /** |
||
8 | * Indicator flag for a calculation error. |
||
9 | * |
||
10 | * @var bool |
||
11 | */ |
||
12 | protected $error = false; |
||
13 | |||
14 | /** |
||
15 | * Algorithm type to use for best-fit. |
||
16 | * |
||
17 | * @var string |
||
18 | */ |
||
19 | protected $bestFitType = 'undetermined'; |
||
20 | |||
21 | /** |
||
22 | * Number of entries in the sets of x- and y-value arrays. |
||
23 | */ |
||
24 | protected int $valueCount; |
||
25 | |||
26 | /** |
||
27 | * X-value dataseries of values. |
||
28 | * |
||
29 | * @var float[] |
||
30 | */ |
||
31 | protected $xValues = []; |
||
32 | |||
33 | /** |
||
34 | * Y-value dataseries of values. |
||
35 | * |
||
36 | * @var float[] |
||
37 | */ |
||
38 | protected $yValues = []; |
||
39 | |||
40 | /** |
||
41 | * Flag indicating whether values should be adjusted to Y=0. |
||
42 | * |
||
43 | * @var bool |
||
44 | */ |
||
45 | protected $adjustToZero = false; |
||
46 | |||
47 | /** |
||
48 | * Y-value series of best-fit values. |
||
49 | * |
||
50 | * @var float[] |
||
51 | */ |
||
52 | protected $yBestFitValues = []; |
||
53 | |||
54 | /** @var float */ |
||
55 | protected $goodnessOfFit = 1; |
||
56 | |||
57 | /** @var float */ |
||
58 | protected $stdevOfResiduals = 0; |
||
59 | |||
60 | /** @var float */ |
||
61 | protected $covariance = 0; |
||
62 | |||
63 | /** @var float */ |
||
64 | protected $correlation = 0; |
||
65 | |||
66 | /** @var float */ |
||
67 | protected $SSRegression = 0; |
||
68 | |||
69 | /** @var float */ |
||
70 | protected $SSResiduals = 0; |
||
71 | |||
72 | /** @var float */ |
||
73 | protected $DFResiduals = 0; |
||
74 | |||
75 | /** @var float */ |
||
76 | protected $f = 0; |
||
77 | |||
78 | /** @var float */ |
||
79 | protected $slope = 0; |
||
80 | |||
81 | /** @var float */ |
||
82 | protected $slopeSE = 0; |
||
83 | |||
84 | /** @var float */ |
||
85 | protected $intersect = 0; |
||
86 | |||
87 | /** @var float */ |
||
88 | protected $intersectSE = 0; |
||
89 | |||
90 | /** @var float */ |
||
91 | protected $xOffset = 0; |
||
92 | |||
93 | /** @var float */ |
||
94 | protected $yOffset = 0; |
||
95 | |||
96 | /** @return bool */ |
||
97 | public function getError() |
||
98 | { |
||
99 | return $this->error; |
||
100 | } |
||
101 | |||
102 | /** @return string */ |
||
103 | public function getBestFitType() |
||
104 | { |
||
105 | return $this->bestFitType; |
||
106 | } |
||
107 | |||
108 | /** |
||
109 | * Return the Y-Value for a specified value of X. |
||
110 | * |
||
111 | * @param float $xValue X-Value |
||
112 | * |
||
113 | * @return float Y-Value |
||
114 | */ |
||
115 | abstract public function getValueOfYForX($xValue); |
||
116 | |||
117 | /** |
||
118 | * Return the X-Value for a specified value of Y. |
||
119 | * |
||
120 | * @param float $yValue Y-Value |
||
121 | * |
||
122 | * @return float X-Value |
||
123 | */ |
||
124 | abstract public function getValueOfXForY($yValue); |
||
125 | |||
126 | /** |
||
127 | * Return the original set of X-Values. |
||
128 | * |
||
129 | * @return float[] X-Values |
||
130 | */ |
||
131 | 4 | public function getXValues() |
|
132 | { |
||
133 | 4 | return $this->xValues; |
|
134 | } |
||
135 | |||
136 | /** |
||
137 | * Return the Equation of the best-fit line. |
||
138 | * |
||
139 | * @param int $dp Number of places of decimal precision to display |
||
140 | * |
||
141 | * @return string |
||
142 | */ |
||
143 | abstract public function getEquation($dp = 0); |
||
144 | |||
145 | /** |
||
146 | * Return the Slope of the line. |
||
147 | * |
||
148 | * @param int $dp Number of places of decimal precision to display |
||
149 | * |
||
150 | * @return float |
||
151 | */ |
||
152 | 41 | public function getSlope($dp = 0) |
|
153 | { |
||
154 | 41 | if ($dp != 0) { |
|
155 | 2 | return round($this->slope, $dp); |
|
156 | } |
||
157 | |||
158 | 41 | return $this->slope; |
|
159 | } |
||
160 | |||
161 | /** |
||
162 | * Return the standard error of the Slope. |
||
163 | * |
||
164 | * @param int $dp Number of places of decimal precision to display |
||
165 | * |
||
166 | * @return float |
||
167 | */ |
||
168 | 3 | public function getSlopeSE($dp = 0) |
|
175 | } |
||
176 | |||
177 | /** |
||
178 | * Return the Value of X where it intersects Y = 0. |
||
179 | * |
||
180 | * @param int $dp Number of places of decimal precision to display |
||
181 | * |
||
182 | * @return float |
||
183 | */ |
||
184 | 39 | public function getIntersect($dp = 0) |
|
185 | { |
||
186 | 39 | if ($dp != 0) { |
|
187 | 2 | return round($this->intersect, $dp); |
|
188 | } |
||
189 | |||
190 | 39 | return $this->intersect; |
|
191 | } |
||
192 | |||
193 | /** |
||
194 | * Return the standard error of the Intersect. |
||
195 | * |
||
196 | * @param int $dp Number of places of decimal precision to display |
||
197 | * |
||
198 | * @return float |
||
199 | */ |
||
200 | 2 | public function getIntersectSE($dp = 0) |
|
201 | { |
||
202 | 2 | if ($dp != 0) { |
|
203 | return round($this->intersectSE, $dp); |
||
204 | } |
||
205 | |||
206 | 2 | return $this->intersectSE; |
|
207 | } |
||
208 | |||
209 | /** |
||
210 | * Return the goodness of fit for this regression. |
||
211 | * |
||
212 | * @param int $dp Number of places of decimal precision to return |
||
213 | * |
||
214 | * @return float |
||
215 | */ |
||
216 | 10 | public function getGoodnessOfFit($dp = 0) |
|
217 | { |
||
218 | 10 | if ($dp != 0) { |
|
219 | 3 | return round($this->goodnessOfFit, $dp); |
|
220 | } |
||
221 | |||
222 | 10 | return $this->goodnessOfFit; |
|
223 | } |
||
224 | |||
225 | /** |
||
226 | * Return the goodness of fit for this regression. |
||
227 | * |
||
228 | * @param int $dp Number of places of decimal precision to return |
||
229 | * |
||
230 | * @return float |
||
231 | */ |
||
232 | public function getGoodnessOfFitPercent($dp = 0) |
||
233 | { |
||
234 | if ($dp != 0) { |
||
235 | return round($this->goodnessOfFit * 100, $dp); |
||
236 | } |
||
237 | |||
238 | return $this->goodnessOfFit * 100; |
||
239 | } |
||
240 | |||
241 | /** |
||
242 | * Return the standard deviation of the residuals for this regression. |
||
243 | * |
||
244 | * @param int $dp Number of places of decimal precision to return |
||
245 | * |
||
246 | * @return float |
||
247 | */ |
||
248 | 7 | public function getStdevOfResiduals($dp = 0) |
|
249 | { |
||
250 | 7 | if ($dp != 0) { |
|
251 | return round($this->stdevOfResiduals, $dp); |
||
252 | } |
||
253 | |||
254 | 7 | return $this->stdevOfResiduals; |
|
255 | } |
||
256 | |||
257 | /** |
||
258 | * @param int $dp Number of places of decimal precision to return |
||
259 | * |
||
260 | * @return float |
||
261 | */ |
||
262 | 3 | public function getSSRegression($dp = 0) |
|
263 | { |
||
264 | 3 | if ($dp != 0) { |
|
265 | return round($this->SSRegression, $dp); |
||
266 | } |
||
267 | |||
268 | 3 | return $this->SSRegression; |
|
269 | } |
||
270 | |||
271 | /** |
||
272 | * @param int $dp Number of places of decimal precision to return |
||
273 | * |
||
274 | * @return float |
||
275 | */ |
||
276 | 3 | public function getSSResiduals($dp = 0) |
|
277 | { |
||
278 | 3 | if ($dp != 0) { |
|
279 | return round($this->SSResiduals, $dp); |
||
280 | } |
||
281 | |||
282 | 3 | return $this->SSResiduals; |
|
283 | } |
||
284 | |||
285 | /** |
||
286 | * @param int $dp Number of places of decimal precision to return |
||
287 | * |
||
288 | * @return float |
||
289 | */ |
||
290 | 3 | public function getDFResiduals($dp = 0) |
|
291 | { |
||
292 | 3 | if ($dp != 0) { |
|
293 | return round($this->DFResiduals, $dp); |
||
294 | } |
||
295 | |||
296 | 3 | return $this->DFResiduals; |
|
297 | } |
||
298 | |||
299 | /** |
||
300 | * @param int $dp Number of places of decimal precision to return |
||
301 | * |
||
302 | * @return float |
||
303 | */ |
||
304 | 3 | public function getF($dp = 0) |
|
305 | { |
||
306 | 3 | if ($dp != 0) { |
|
307 | return round($this->f, $dp); |
||
308 | } |
||
309 | |||
310 | 3 | return $this->f; |
|
311 | } |
||
312 | |||
313 | /** |
||
314 | * @param int $dp Number of places of decimal precision to return |
||
315 | * |
||
316 | * @return float |
||
317 | */ |
||
318 | 5 | public function getCovariance($dp = 0) |
|
319 | { |
||
320 | 5 | if ($dp != 0) { |
|
321 | return round($this->covariance, $dp); |
||
322 | } |
||
323 | |||
324 | 5 | return $this->covariance; |
|
325 | } |
||
326 | |||
327 | /** |
||
328 | * @param int $dp Number of places of decimal precision to return |
||
329 | * |
||
330 | * @return float |
||
331 | */ |
||
332 | 4 | public function getCorrelation($dp = 0) |
|
339 | } |
||
340 | |||
341 | /** |
||
342 | * @return float[] |
||
343 | */ |
||
344 | public function getYBestFitValues() |
||
347 | } |
||
348 | |||
349 | /** |
||
350 | * @param float $sumX |
||
351 | * @param float $sumY |
||
352 | 37 | * @param float $sumX2 |
|
353 | * @param float $sumY2 |
||
354 | 37 | * @param float $sumXY |
|
355 | * @param float $meanX |
||
356 | * @param float $meanY |
||
357 | * @param bool|int $const |
||
358 | */ |
||
359 | protected function calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const): void |
||
360 | { |
||
361 | $SSres = $SScov = $SStot = $SSsex = 0.0; |
||
362 | foreach ($this->xValues as $xKey => $xValue) { |
||
363 | $bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue); |
||
364 | |||
365 | $SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY); |
||
366 | if ($const === true) { |
||
367 | 37 | $SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY); |
|
368 | } else { |
||
369 | 37 | $SStot += $this->yValues[$xKey] * $this->yValues[$xKey]; |
|
370 | 37 | } |
|
371 | 37 | $SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY); |
|
372 | if ($const === true) { |
||
373 | 37 | $SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX); |
|
374 | 37 | } else { |
|
375 | 32 | $SSsex += $this->xValues[$xKey] * $this->xValues[$xKey]; |
|
376 | } |
||
377 | 5 | } |
|
378 | |||
379 | 37 | $this->SSResiduals = $SSres; |
|
380 | 37 | $this->DFResiduals = $this->valueCount - 1 - ($const === true ? 1 : 0); |
|
381 | 32 | ||
382 | if ($this->DFResiduals == 0.0) { |
||
383 | 5 | $this->stdevOfResiduals = 0.0; |
|
384 | } else { |
||
385 | $this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals); |
||
386 | } |
||
387 | 37 | ||
388 | 37 | if ($SStot == 0.0 || $SSres == $SStot) { |
|
1 ignored issue
–
show
|
|||
389 | $this->goodnessOfFit = 1; |
||
390 | 37 | } else { |
|
391 | 1 | $this->goodnessOfFit = 1 - ($SSres / $SStot); |
|
392 | } |
||
393 | 36 | ||
394 | $this->SSRegression = $this->goodnessOfFit * $SStot; |
||
395 | $this->covariance = $SScov / $this->valueCount; |
||
396 | 37 | $this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - $sumX ** 2) * ($this->valueCount * $sumY2 - $sumY ** 2)); |
|
397 | $this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex); |
||
398 | $this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2)); |
||
399 | 37 | if ($this->SSResiduals != 0.0) { |
|
400 | if ($this->DFResiduals == 0.0) { |
||
401 | $this->f = 0.0; |
||
402 | 37 | } else { |
|
403 | 37 | $this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals); |
|
404 | 37 | } |
|
405 | 37 | } else { |
|
406 | 37 | if ($this->DFResiduals == 0.0) { |
|
407 | 37 | $this->f = 0.0; |
|
408 | 26 | } else { |
|
409 | $this->f = $this->SSRegression / $this->DFResiduals; |
||
410 | } |
||
411 | 26 | } |
|
412 | } |
||
413 | |||
414 | 12 | /** @return float|int */ |
|
415 | 1 | private function sumSquares(array $values) |
|
416 | { |
||
417 | 11 | return array_sum( |
|
418 | array_map( |
||
419 | fn ($value): float|int => $value ** 2, |
||
420 | $values |
||
421 | ) |
||
422 | ); |
||
423 | 37 | } |
|
424 | |||
425 | 37 | /** |
|
426 | 37 | * @param float[] $yValues |
|
427 | 37 | * @param float[] $xValues |
|
428 | 37 | */ |
|
429 | 37 | protected function leastSquareFit(array $yValues, array $xValues, bool $const): void |
|
459 | } |
||
460 | |||
461 | 37 | /** |
|
462 | * Define the regression. |
||
463 | * |
||
464 | 37 | * @param float[] $yValues The set of Y-values for this regression |
|
465 | * @param float[] $xValues The set of X-values for this regression |
||
466 | 37 | */ |
|
467 | public function __construct($yValues, $xValues = []) |
||
484 | 37 | } |
|
485 | } |
||
486 |