1
|
|
|
<?php |
2
|
|
|
|
3
|
|
|
namespace PhpOffice\PhpSpreadsheet\Shared\JAMA; |
4
|
|
|
|
5
|
|
|
use PhpOffice\PhpSpreadsheet\Calculation\Exception as CalculationException; |
6
|
|
|
|
7
|
|
|
/** |
8
|
|
|
* For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n |
9
|
|
|
* unit lower triangular matrix L, an n-by-n upper triangular matrix U, |
10
|
|
|
* and a permutation vector piv of length m so that A(piv,:) = L*U. |
11
|
|
|
* If m < n, then L is m-by-m and U is m-by-n. |
12
|
|
|
* |
13
|
|
|
* The LU decompostion with pivoting always exists, even if the matrix is |
14
|
|
|
* singular, so the constructor will never fail. The primary use of the |
15
|
|
|
* LU decomposition is in the solution of square systems of simultaneous |
16
|
|
|
* linear equations. This will fail if isNonsingular() returns false. |
17
|
|
|
* |
18
|
|
|
* @author Paul Meagher |
19
|
|
|
* @author Bartosz Matosiuk |
20
|
|
|
* @author Michael Bommarito |
21
|
|
|
* |
22
|
|
|
* @version 1.1 |
23
|
|
|
*/ |
24
|
|
|
class LUDecomposition |
25
|
|
|
{ |
26
|
|
|
const MATRIX_SINGULAR_EXCEPTION = 'Can only perform operation on singular matrix.'; |
27
|
|
|
const MATRIX_SQUARE_EXCEPTION = 'Mismatched Row dimension'; |
28
|
|
|
|
29
|
|
|
/** |
30
|
|
|
* Decomposition storage. |
31
|
|
|
* |
32
|
|
|
* @var array |
33
|
|
|
*/ |
34
|
|
|
private $LU = []; |
35
|
|
|
|
36
|
|
|
/** |
37
|
|
|
* Row dimension. |
38
|
|
|
* |
39
|
|
|
* @var int |
40
|
|
|
*/ |
41
|
|
|
private $m; |
42
|
|
|
|
43
|
|
|
/** |
44
|
|
|
* Column dimension. |
45
|
|
|
* |
46
|
|
|
* @var int |
47
|
|
|
*/ |
48
|
|
|
private $n; |
49
|
|
|
|
50
|
|
|
/** |
51
|
|
|
* Pivot sign. |
52
|
|
|
* |
53
|
|
|
* @var int |
54
|
|
|
*/ |
55
|
|
|
private $pivsign; |
56
|
|
|
|
57
|
|
|
/** |
58
|
|
|
* Internal storage of pivot vector. |
59
|
|
|
* |
60
|
|
|
* @var array |
61
|
|
|
*/ |
62
|
|
|
private $piv = []; |
63
|
|
|
|
64
|
|
|
/** |
65
|
|
|
* LU Decomposition constructor. |
66
|
|
|
* |
67
|
|
|
* @param Matrix $A Rectangular matrix |
68
|
|
|
*/ |
69
|
|
|
public function __construct($A) |
70
|
|
|
{ |
71
|
|
|
if ($A instanceof Matrix) { |
|
|
|
|
72
|
|
|
// Use a "left-looking", dot-product, Crout/Doolittle algorithm. |
73
|
|
|
$this->LU = $A->getArray(); |
74
|
|
|
$this->m = $A->getRowDimension(); |
75
|
|
|
$this->n = $A->getColumnDimension(); |
76
|
|
|
for ($i = 0; $i < $this->m; ++$i) { |
77
|
|
|
$this->piv[$i] = $i; |
78
|
|
|
} |
79
|
|
|
$this->pivsign = 1; |
80
|
|
|
$LUrowi = $LUcolj = []; |
|
|
|
|
81
|
|
|
|
82
|
|
|
// Outer loop. |
83
|
|
|
for ($j = 0; $j < $this->n; ++$j) { |
84
|
|
|
// Make a copy of the j-th column to localize references. |
85
|
|
|
for ($i = 0; $i < $this->m; ++$i) { |
86
|
|
|
$LUcolj[$i] = &$this->LU[$i][$j]; |
87
|
|
|
} |
88
|
|
|
// Apply previous transformations. |
89
|
|
|
for ($i = 0; $i < $this->m; ++$i) { |
90
|
|
|
$LUrowi = $this->LU[$i]; |
91
|
|
|
// Most of the time is spent in the following dot product. |
92
|
|
|
$kmax = min($i, $j); |
93
|
|
|
$s = 0.0; |
94
|
|
|
for ($k = 0; $k < $kmax; ++$k) { |
95
|
|
|
$s += $LUrowi[$k] * $LUcolj[$k]; |
96
|
|
|
} |
97
|
|
|
$LUrowi[$j] = $LUcolj[$i] -= $s; |
98
|
|
|
} |
99
|
|
|
// Find pivot and exchange if necessary. |
100
|
|
|
$p = $j; |
101
|
|
|
for ($i = $j + 1; $i < $this->m; ++$i) { |
102
|
|
|
if (abs($LUcolj[$i]) > abs($LUcolj[$p])) { |
103
|
|
|
$p = $i; |
104
|
|
|
} |
105
|
|
|
} |
106
|
|
|
if ($p != $j) { |
107
|
|
|
for ($k = 0; $k < $this->n; ++$k) { |
108
|
|
|
$t = $this->LU[$p][$k]; |
109
|
|
|
$this->LU[$p][$k] = $this->LU[$j][$k]; |
110
|
|
|
$this->LU[$j][$k] = $t; |
111
|
|
|
} |
112
|
|
|
$k = $this->piv[$p]; |
113
|
|
|
$this->piv[$p] = $this->piv[$j]; |
114
|
|
|
$this->piv[$j] = $k; |
115
|
|
|
$this->pivsign = $this->pivsign * -1; |
116
|
|
|
} |
117
|
|
|
// Compute multipliers. |
118
|
|
|
if (($j < $this->m) && ($this->LU[$j][$j] != 0.0)) { |
119
|
|
|
for ($i = $j + 1; $i < $this->m; ++$i) { |
120
|
|
|
$this->LU[$i][$j] /= $this->LU[$j][$j]; |
121
|
|
|
} |
122
|
|
|
} |
123
|
|
|
} |
124
|
|
|
} else { |
125
|
|
|
throw new CalculationException(Matrix::ARGUMENT_TYPE_EXCEPTION); |
126
|
|
|
} |
127
|
|
|
} |
128
|
|
|
|
129
|
|
|
// function __construct() |
|
|
|
|
130
|
|
|
|
131
|
|
|
/** |
132
|
|
|
* Get lower triangular factor. |
133
|
|
|
* |
134
|
|
|
* @return Matrix Lower triangular factor |
135
|
|
|
*/ |
136
|
|
|
public function getL() |
137
|
|
|
{ |
138
|
|
|
for ($i = 0; $i < $this->m; ++$i) { |
139
|
|
|
for ($j = 0; $j < $this->n; ++$j) { |
140
|
|
|
if ($i > $j) { |
141
|
|
|
$L[$i][$j] = $this->LU[$i][$j]; |
142
|
|
|
} elseif ($i == $j) { |
143
|
|
|
$L[$i][$j] = 1.0; |
144
|
|
|
} else { |
145
|
|
|
$L[$i][$j] = 0.0; |
146
|
|
|
} |
147
|
|
|
} |
148
|
|
|
} |
149
|
|
|
|
150
|
|
|
return new Matrix($L); |
|
|
|
|
151
|
|
|
} |
152
|
|
|
|
153
|
|
|
// function getL() |
|
|
|
|
154
|
|
|
|
155
|
|
|
/** |
156
|
|
|
* Get upper triangular factor. |
157
|
|
|
* |
158
|
|
|
* @return Matrix Upper triangular factor |
159
|
|
|
*/ |
160
|
|
|
public function getU() |
161
|
|
|
{ |
162
|
|
|
for ($i = 0; $i < $this->n; ++$i) { |
163
|
|
|
for ($j = 0; $j < $this->n; ++$j) { |
164
|
|
|
if ($i <= $j) { |
165
|
|
|
$U[$i][$j] = $this->LU[$i][$j]; |
166
|
|
|
} else { |
167
|
|
|
$U[$i][$j] = 0.0; |
168
|
|
|
} |
169
|
|
|
} |
170
|
|
|
} |
171
|
|
|
|
172
|
|
|
return new Matrix($U); |
|
|
|
|
173
|
|
|
} |
174
|
|
|
|
175
|
|
|
// function getU() |
|
|
|
|
176
|
|
|
|
177
|
|
|
/** |
178
|
|
|
* Return pivot permutation vector. |
179
|
|
|
* |
180
|
|
|
* @return array Pivot vector |
181
|
|
|
*/ |
182
|
|
|
public function getPivot() |
183
|
|
|
{ |
184
|
|
|
return $this->piv; |
185
|
|
|
} |
186
|
|
|
|
187
|
|
|
// function getPivot() |
|
|
|
|
188
|
|
|
|
189
|
|
|
/** |
190
|
|
|
* Alias for getPivot. |
191
|
|
|
* |
192
|
|
|
* @see getPivot |
193
|
|
|
*/ |
194
|
|
|
public function getDoublePivot() |
195
|
|
|
{ |
196
|
|
|
return $this->getPivot(); |
197
|
|
|
} |
198
|
|
|
|
199
|
|
|
// function getDoublePivot() |
|
|
|
|
200
|
|
|
|
201
|
|
|
/** |
202
|
|
|
* Is the matrix nonsingular? |
203
|
|
|
* |
204
|
|
|
* @return bool true if U, and hence A, is nonsingular |
205
|
|
|
*/ |
206
|
|
|
public function isNonsingular() |
207
|
|
|
{ |
208
|
|
|
for ($j = 0; $j < $this->n; ++$j) { |
209
|
|
|
if ($this->LU[$j][$j] == 0) { |
210
|
|
|
return false; |
211
|
|
|
} |
212
|
|
|
} |
213
|
|
|
|
214
|
|
|
return true; |
215
|
|
|
} |
216
|
|
|
|
217
|
|
|
// function isNonsingular() |
|
|
|
|
218
|
|
|
|
219
|
|
|
/** |
220
|
|
|
* Count determinants. |
221
|
|
|
* |
222
|
|
|
* @return array d matrix deterninat |
223
|
|
|
*/ |
224
|
|
|
public function det() |
225
|
|
|
{ |
226
|
|
|
if ($this->m == $this->n) { |
227
|
|
|
$d = $this->pivsign; |
228
|
|
|
for ($j = 0; $j < $this->n; ++$j) { |
229
|
|
|
$d *= $this->LU[$j][$j]; |
230
|
|
|
} |
231
|
|
|
|
232
|
|
|
return $d; |
|
|
|
|
233
|
|
|
} |
234
|
|
|
|
235
|
|
|
throw new CalculationException(Matrix::MATRIX_DIMENSION_EXCEPTION); |
236
|
|
|
} |
237
|
|
|
|
238
|
|
|
// function det() |
|
|
|
|
239
|
|
|
|
240
|
|
|
/** |
241
|
|
|
* Solve A*X = B. |
242
|
|
|
* |
243
|
|
|
* @param mixed $B a Matrix with as many rows as A and any number of columns |
244
|
|
|
* |
245
|
|
|
* @throws CalculationException illegalArgumentException Matrix row dimensions must agree |
246
|
|
|
* @throws CalculationException runtimeException Matrix is singular |
247
|
|
|
* |
248
|
|
|
* @return Matrix X so that L*U*X = B(piv,:) |
249
|
|
|
*/ |
250
|
|
|
public function solve($B) |
251
|
|
|
{ |
252
|
|
|
if ($B->getRowDimension() == $this->m) { |
253
|
|
|
if ($this->isNonsingular()) { |
254
|
|
|
// Copy right hand side with pivoting |
255
|
|
|
$nx = $B->getColumnDimension(); |
256
|
|
|
$X = $B->getMatrix($this->piv, 0, $nx - 1); |
257
|
|
|
// Solve L*Y = B(piv,:) |
258
|
|
|
for ($k = 0; $k < $this->n; ++$k) { |
259
|
|
|
for ($i = $k + 1; $i < $this->n; ++$i) { |
260
|
|
|
for ($j = 0; $j < $nx; ++$j) { |
261
|
|
|
$X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k]; |
262
|
|
|
} |
263
|
|
|
} |
264
|
|
|
} |
265
|
|
|
// Solve U*X = Y; |
266
|
|
|
for ($k = $this->n - 1; $k >= 0; --$k) { |
267
|
|
|
for ($j = 0; $j < $nx; ++$j) { |
268
|
|
|
$X->A[$k][$j] /= $this->LU[$k][$k]; |
269
|
|
|
} |
270
|
|
|
for ($i = 0; $i < $k; ++$i) { |
271
|
|
|
for ($j = 0; $j < $nx; ++$j) { |
272
|
|
|
$X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k]; |
273
|
|
|
} |
274
|
|
|
} |
275
|
|
|
} |
276
|
|
|
|
277
|
|
|
return $X; |
278
|
|
|
} |
279
|
|
|
|
280
|
|
|
throw new CalculationException(self::MATRIX_SINGULAR_EXCEPTION); |
281
|
|
|
} |
282
|
|
|
|
283
|
|
|
throw new CalculationException(self::MATRIX_SQUARE_EXCEPTION); |
284
|
|
|
} |
285
|
|
|
} |
286
|
|
|
|