Total Complexity | 106 |
Total Lines | 507 |
Duplicated Lines | 14.99 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like SingularValueDecomposition often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use SingularValueDecomposition, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
21 | class SingularValueDecomposition |
||
22 | { |
||
23 | /** |
||
24 | * Internal storage of U. |
||
25 | * |
||
26 | * @var array |
||
27 | */ |
||
28 | private $U = []; |
||
29 | |||
30 | /** |
||
31 | * Internal storage of V. |
||
32 | * |
||
33 | * @var array |
||
34 | */ |
||
35 | private $V = []; |
||
36 | |||
37 | /** |
||
38 | * Internal storage of singular values. |
||
39 | * |
||
40 | * @var array |
||
41 | */ |
||
42 | private $s = []; |
||
43 | |||
44 | /** |
||
45 | * Row dimension. |
||
46 | * |
||
47 | * @var int |
||
48 | */ |
||
49 | private $m; |
||
50 | |||
51 | /** |
||
52 | * Column dimension. |
||
53 | * |
||
54 | * @var int |
||
55 | */ |
||
56 | private $n; |
||
57 | |||
58 | /** |
||
59 | * Construct the singular value decomposition. |
||
60 | * |
||
61 | * Derived from LINPACK code. |
||
62 | * |
||
63 | * @param $A Rectangular matrix |
||
|
|||
64 | * @param mixed $Arg |
||
65 | * |
||
66 | * @return Structure to access U, S and V |
||
67 | */ |
||
68 | public function __construct($Arg) |
||
69 | { |
||
70 | // Initialize. |
||
71 | $A = $Arg->getArrayCopy(); |
||
72 | $this->m = $Arg->getRowDimension(); |
||
73 | $this->n = $Arg->getColumnDimension(); |
||
74 | $nu = min($this->m, $this->n); |
||
75 | $e = []; |
||
76 | $work = []; |
||
77 | $wantu = true; |
||
78 | $wantv = true; |
||
79 | $nct = min($this->m - 1, $this->n); |
||
80 | $nrt = max(0, min($this->n - 2, $this->m)); |
||
81 | |||
82 | // Reduce A to bidiagonal form, storing the diagonal elements |
||
83 | // in s and the super-diagonal elements in e. |
||
84 | for ($k = 0; $k < max($nct, $nrt); ++$k) { |
||
85 | if ($k < $nct) { |
||
86 | // Compute the transformation for the k-th column and |
||
87 | // place the k-th diagonal in s[$k]. |
||
88 | // Compute 2-norm of k-th column without under/overflow. |
||
89 | $this->s[$k] = 0; |
||
90 | for ($i = $k; $i < $this->m; ++$i) { |
||
91 | $this->s[$k] = hypo($this->s[$k], $A[$i][$k]); |
||
92 | } |
||
93 | if ($this->s[$k] != 0.0) { |
||
94 | if ($A[$k][$k] < 0.0) { |
||
95 | $this->s[$k] = -$this->s[$k]; |
||
96 | } |
||
97 | for ($i = $k; $i < $this->m; ++$i) { |
||
98 | $A[$i][$k] /= $this->s[$k]; |
||
99 | } |
||
100 | $A[$k][$k] += 1.0; |
||
101 | } |
||
102 | $this->s[$k] = -$this->s[$k]; |
||
103 | } |
||
104 | |||
105 | for ($j = $k + 1; $j < $this->n; ++$j) { |
||
106 | if (($k < $nct) & ($this->s[$k] != 0.0)) { |
||
107 | // Apply the transformation. |
||
108 | $t = 0; |
||
109 | for ($i = $k; $i < $this->m; ++$i) { |
||
110 | $t += $A[$i][$k] * $A[$i][$j]; |
||
111 | } |
||
112 | $t = -$t / $A[$k][$k]; |
||
113 | for ($i = $k; $i < $this->m; ++$i) { |
||
114 | $A[$i][$j] += $t * $A[$i][$k]; |
||
115 | } |
||
116 | // Place the k-th row of A into e for the |
||
117 | // subsequent calculation of the row transformation. |
||
118 | $e[$j] = $A[$k][$j]; |
||
119 | } |
||
120 | } |
||
121 | |||
122 | if ($wantu and ($k < $nct)) { |
||
123 | // Place the transformation in U for subsequent back |
||
124 | // multiplication. |
||
125 | for ($i = $k; $i < $this->m; ++$i) { |
||
126 | $this->U[$i][$k] = $A[$i][$k]; |
||
127 | } |
||
128 | } |
||
129 | |||
130 | if ($k < $nrt) { |
||
131 | // Compute the k-th row transformation and place the |
||
132 | // k-th super-diagonal in e[$k]. |
||
133 | // Compute 2-norm without under/overflow. |
||
134 | $e[$k] = 0; |
||
135 | for ($i = $k + 1; $i < $this->n; ++$i) { |
||
136 | $e[$k] = hypo($e[$k], $e[$i]); |
||
137 | } |
||
138 | if ($e[$k] != 0.0) { |
||
139 | if ($e[$k + 1] < 0.0) { |
||
140 | $e[$k] = -$e[$k]; |
||
141 | } |
||
142 | for ($i = $k + 1; $i < $this->n; ++$i) { |
||
143 | $e[$i] /= $e[$k]; |
||
144 | } |
||
145 | $e[$k + 1] += 1.0; |
||
146 | } |
||
147 | $e[$k] = -$e[$k]; |
||
148 | if (($k + 1 < $this->m) and ($e[$k] != 0.0)) { |
||
149 | // Apply the transformation. |
||
150 | View Code Duplication | for ($i = $k + 1; $i < $this->m; ++$i) { |
|
151 | $work[$i] = 0.0; |
||
152 | } |
||
153 | for ($j = $k + 1; $j < $this->n; ++$j) { |
||
154 | for ($i = $k + 1; $i < $this->m; ++$i) { |
||
155 | $work[$i] += $e[$j] * $A[$i][$j]; |
||
156 | } |
||
157 | } |
||
158 | for ($j = $k + 1; $j < $this->n; ++$j) { |
||
159 | $t = -$e[$j] / $e[$k + 1]; |
||
160 | for ($i = $k + 1; $i < $this->m; ++$i) { |
||
161 | $A[$i][$j] += $t * $work[$i]; |
||
162 | } |
||
163 | } |
||
164 | } |
||
165 | View Code Duplication | if ($wantv) { |
|
166 | // Place the transformation in V for subsequent |
||
167 | // back multiplication. |
||
168 | for ($i = $k + 1; $i < $this->n; ++$i) { |
||
169 | $this->V[$i][$k] = $e[$i]; |
||
170 | } |
||
171 | } |
||
172 | } |
||
173 | } |
||
174 | |||
175 | // Set up the final bidiagonal matrix or order p. |
||
176 | $p = min($this->n, $this->m + 1); |
||
177 | if ($nct < $this->n) { |
||
178 | $this->s[$nct] = $A[$nct][$nct]; |
||
179 | } |
||
180 | if ($this->m < $p) { |
||
181 | $this->s[$p - 1] = 0.0; |
||
182 | } |
||
183 | if ($nrt + 1 < $p) { |
||
184 | $e[$nrt] = $A[$nrt][$p - 1]; |
||
185 | } |
||
186 | $e[$p - 1] = 0.0; |
||
187 | // If required, generate U. |
||
188 | if ($wantu) { |
||
189 | for ($j = $nct; $j < $nu; ++$j) { |
||
190 | for ($i = 0; $i < $this->m; ++$i) { |
||
191 | $this->U[$i][$j] = 0.0; |
||
192 | } |
||
193 | $this->U[$j][$j] = 1.0; |
||
194 | } |
||
195 | for ($k = $nct - 1; $k >= 0; --$k) { |
||
196 | if ($this->s[$k] != 0.0) { |
||
197 | View Code Duplication | for ($j = $k + 1; $j < $nu; ++$j) { |
|
198 | $t = 0; |
||
199 | for ($i = $k; $i < $this->m; ++$i) { |
||
200 | $t += $this->U[$i][$k] * $this->U[$i][$j]; |
||
201 | } |
||
202 | $t = -$t / $this->U[$k][$k]; |
||
203 | for ($i = $k; $i < $this->m; ++$i) { |
||
204 | $this->U[$i][$j] += $t * $this->U[$i][$k]; |
||
205 | } |
||
206 | } |
||
207 | for ($i = $k; $i < $this->m; ++$i) { |
||
208 | $this->U[$i][$k] = -$this->U[$i][$k]; |
||
209 | } |
||
210 | $this->U[$k][$k] = 1.0 + $this->U[$k][$k]; |
||
211 | View Code Duplication | for ($i = 0; $i < $k - 1; ++$i) { |
|
212 | $this->U[$i][$k] = 0.0; |
||
213 | } |
||
214 | } else { |
||
215 | View Code Duplication | for ($i = 0; $i < $this->m; ++$i) { |
|
216 | $this->U[$i][$k] = 0.0; |
||
217 | } |
||
218 | $this->U[$k][$k] = 1.0; |
||
219 | } |
||
220 | } |
||
221 | } |
||
222 | |||
223 | // If required, generate V. |
||
224 | if ($wantv) { |
||
225 | for ($k = $this->n - 1; $k >= 0; --$k) { |
||
226 | if (($k < $nrt) and ($e[$k] != 0.0)) { |
||
227 | for ($j = $k + 1; $j < $nu; ++$j) { |
||
228 | $t = 0; |
||
229 | for ($i = $k + 1; $i < $this->n; ++$i) { |
||
230 | $t += $this->V[$i][$k] * $this->V[$i][$j]; |
||
231 | } |
||
232 | $t = -$t / $this->V[$k + 1][$k]; |
||
233 | for ($i = $k + 1; $i < $this->n; ++$i) { |
||
234 | $this->V[$i][$j] += $t * $this->V[$i][$k]; |
||
235 | } |
||
236 | } |
||
237 | } |
||
238 | View Code Duplication | for ($i = 0; $i < $this->n; ++$i) { |
|
239 | $this->V[$i][$k] = 0.0; |
||
240 | } |
||
241 | $this->V[$k][$k] = 1.0; |
||
242 | } |
||
243 | } |
||
244 | |||
245 | // Main iteration loop for the singular values. |
||
246 | $pp = $p - 1; |
||
247 | $iter = 0; |
||
248 | $eps = pow(2.0, -52.0); |
||
249 | |||
250 | while ($p > 0) { |
||
251 | // Here is where a test for too many iterations would go. |
||
252 | // This section of the program inspects for negligible |
||
253 | // elements in the s and e arrays. On completion the |
||
254 | // variables kase and k are set as follows: |
||
255 | // kase = 1 if s(p) and e[k-1] are negligible and k<p |
||
256 | // kase = 2 if s(k) is negligible and k<p |
||
257 | // kase = 3 if e[k-1] is negligible, k<p, and |
||
258 | // s(k), ..., s(p) are not negligible (qr step). |
||
259 | // kase = 4 if e(p-1) is negligible (convergence). |
||
260 | for ($k = $p - 2; $k >= -1; --$k) { |
||
261 | if ($k == -1) { |
||
262 | break; |
||
263 | } |
||
264 | if (abs($e[$k]) <= $eps * (abs($this->s[$k]) + abs($this->s[$k + 1]))) { |
||
265 | $e[$k] = 0.0; |
||
266 | |||
267 | break; |
||
268 | } |
||
269 | } |
||
270 | if ($k == $p - 2) { |
||
271 | $kase = 4; |
||
272 | } else { |
||
273 | for ($ks = $p - 1; $ks >= $k; --$ks) { |
||
274 | if ($ks == $k) { |
||
275 | break; |
||
276 | } |
||
277 | $t = ($ks != $p ? abs($e[$ks]) : 0.) + ($ks != $k + 1 ? abs($e[$ks - 1]) : 0.); |
||
278 | if (abs($this->s[$ks]) <= $eps * $t) { |
||
279 | $this->s[$ks] = 0.0; |
||
280 | |||
281 | break; |
||
282 | } |
||
283 | } |
||
284 | if ($ks == $k) { |
||
285 | $kase = 3; |
||
286 | } elseif ($ks == $p - 1) { |
||
287 | $kase = 1; |
||
288 | } else { |
||
289 | $kase = 2; |
||
290 | $k = $ks; |
||
291 | } |
||
292 | } |
||
293 | ++$k; |
||
294 | |||
295 | // Perform the task indicated by kase. |
||
296 | switch ($kase) { |
||
297 | // Deflate negligible s(p). |
||
298 | case 1: |
||
299 | $f = $e[$p - 2]; |
||
300 | $e[$p - 2] = 0.0; |
||
301 | for ($j = $p - 2; $j >= $k; --$j) { |
||
302 | $t = hypo($this->s[$j], $f); |
||
303 | $cs = $this->s[$j] / $t; |
||
304 | $sn = $f / $t; |
||
305 | $this->s[$j] = $t; |
||
306 | if ($j != $k) { |
||
307 | $f = -$sn * $e[$j - 1]; |
||
308 | $e[$j - 1] = $cs * $e[$j - 1]; |
||
309 | } |
||
310 | View Code Duplication | if ($wantv) { |
|
311 | for ($i = 0; $i < $this->n; ++$i) { |
||
312 | $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$p - 1]; |
||
313 | $this->V[$i][$p - 1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$p - 1]; |
||
314 | $this->V[$i][$j] = $t; |
||
315 | } |
||
316 | } |
||
317 | } |
||
318 | |||
319 | break; |
||
320 | // Split at negligible s(k). |
||
321 | case 2: |
||
322 | $f = $e[$k - 1]; |
||
323 | $e[$k - 1] = 0.0; |
||
324 | for ($j = $k; $j < $p; ++$j) { |
||
325 | $t = hypo($this->s[$j], $f); |
||
326 | $cs = $this->s[$j] / $t; |
||
327 | $sn = $f / $t; |
||
328 | $this->s[$j] = $t; |
||
329 | $f = -$sn * $e[$j]; |
||
330 | $e[$j] = $cs * $e[$j]; |
||
331 | View Code Duplication | if ($wantu) { |
|
332 | for ($i = 0; $i < $this->m; ++$i) { |
||
333 | $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$k - 1]; |
||
334 | $this->U[$i][$k - 1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$k - 1]; |
||
335 | $this->U[$i][$j] = $t; |
||
336 | } |
||
337 | } |
||
338 | } |
||
339 | |||
340 | break; |
||
341 | // Perform one qr step. |
||
342 | case 3: |
||
343 | // Calculate the shift. |
||
344 | $scale = max(max(max(max(abs($this->s[$p - 1]), abs($this->s[$p - 2])), abs($e[$p - 2])), abs($this->s[$k])), abs($e[$k])); |
||
345 | $sp = $this->s[$p - 1] / $scale; |
||
346 | $spm1 = $this->s[$p - 2] / $scale; |
||
347 | $epm1 = $e[$p - 2] / $scale; |
||
348 | $sk = $this->s[$k] / $scale; |
||
349 | $ek = $e[$k] / $scale; |
||
350 | $b = (($spm1 + $sp) * ($spm1 - $sp) + $epm1 * $epm1) / 2.0; |
||
351 | $c = ($sp * $epm1) * ($sp * $epm1); |
||
352 | $shift = 0.0; |
||
353 | if (($b != 0.0) || ($c != 0.0)) { |
||
354 | $shift = sqrt($b * $b + $c); |
||
355 | if ($b < 0.0) { |
||
356 | $shift = -$shift; |
||
357 | } |
||
358 | $shift = $c / ($b + $shift); |
||
359 | } |
||
360 | $f = ($sk + $sp) * ($sk - $sp) + $shift; |
||
361 | $g = $sk * $ek; |
||
362 | // Chase zeros. |
||
363 | for ($j = $k; $j < $p - 1; ++$j) { |
||
364 | $t = hypo($f, $g); |
||
365 | $cs = $f / $t; |
||
366 | $sn = $g / $t; |
||
367 | if ($j != $k) { |
||
368 | $e[$j - 1] = $t; |
||
369 | } |
||
370 | $f = $cs * $this->s[$j] + $sn * $e[$j]; |
||
371 | $e[$j] = $cs * $e[$j] - $sn * $this->s[$j]; |
||
372 | $g = $sn * $this->s[$j + 1]; |
||
373 | $this->s[$j + 1] = $cs * $this->s[$j + 1]; |
||
374 | View Code Duplication | if ($wantv) { |
|
375 | for ($i = 0; $i < $this->n; ++$i) { |
||
376 | $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$j + 1]; |
||
377 | $this->V[$i][$j + 1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$j + 1]; |
||
378 | $this->V[$i][$j] = $t; |
||
379 | } |
||
380 | } |
||
381 | $t = hypo($f, $g); |
||
382 | $cs = $f / $t; |
||
383 | $sn = $g / $t; |
||
384 | $this->s[$j] = $t; |
||
385 | $f = $cs * $e[$j] + $sn * $this->s[$j + 1]; |
||
386 | $this->s[$j + 1] = -$sn * $e[$j] + $cs * $this->s[$j + 1]; |
||
387 | $g = $sn * $e[$j + 1]; |
||
388 | $e[$j + 1] = $cs * $e[$j + 1]; |
||
389 | View Code Duplication | if ($wantu && ($j < $this->m - 1)) { |
|
390 | for ($i = 0; $i < $this->m; ++$i) { |
||
391 | $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$j + 1]; |
||
392 | $this->U[$i][$j + 1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$j + 1]; |
||
393 | $this->U[$i][$j] = $t; |
||
394 | } |
||
395 | } |
||
396 | } |
||
397 | $e[$p - 2] = $f; |
||
398 | $iter = $iter + 1; |
||
399 | |||
400 | break; |
||
401 | // Convergence. |
||
402 | case 4: |
||
403 | // Make the singular values positive. |
||
404 | if ($this->s[$k] <= 0.0) { |
||
405 | $this->s[$k] = ($this->s[$k] < 0.0 ? -$this->s[$k] : 0.0); |
||
406 | View Code Duplication | if ($wantv) { |
|
407 | for ($i = 0; $i <= $pp; ++$i) { |
||
408 | $this->V[$i][$k] = -$this->V[$i][$k]; |
||
409 | } |
||
410 | } |
||
411 | } |
||
412 | // Order the singular values. |
||
413 | while ($k < $pp) { |
||
414 | if ($this->s[$k] >= $this->s[$k + 1]) { |
||
415 | break; |
||
416 | } |
||
417 | $t = $this->s[$k]; |
||
418 | $this->s[$k] = $this->s[$k + 1]; |
||
419 | $this->s[$k + 1] = $t; |
||
420 | View Code Duplication | if ($wantv and ($k < $this->n - 1)) { |
|
421 | for ($i = 0; $i < $this->n; ++$i) { |
||
422 | $t = $this->V[$i][$k + 1]; |
||
423 | $this->V[$i][$k + 1] = $this->V[$i][$k]; |
||
424 | $this->V[$i][$k] = $t; |
||
425 | } |
||
426 | } |
||
427 | View Code Duplication | if ($wantu and ($k < $this->m - 1)) { |
|
428 | for ($i = 0; $i < $this->m; ++$i) { |
||
429 | $t = $this->U[$i][$k + 1]; |
||
430 | $this->U[$i][$k + 1] = $this->U[$i][$k]; |
||
431 | $this->U[$i][$k] = $t; |
||
432 | } |
||
433 | } |
||
434 | ++$k; |
||
435 | } |
||
436 | $iter = 0; |
||
437 | --$p; |
||
438 | |||
439 | break; |
||
440 | } // end switch |
||
441 | } // end while |
||
442 | } |
||
443 | |||
444 | /** |
||
445 | * Return the left singular vectors. |
||
446 | * |
||
447 | * @return U |
||
448 | */ |
||
449 | public function getU() |
||
450 | { |
||
451 | return new Matrix($this->U, $this->m, min($this->m + 1, $this->n)); |
||
452 | } |
||
453 | |||
454 | /** |
||
455 | * Return the right singular vectors. |
||
456 | * |
||
457 | * @return V |
||
458 | */ |
||
459 | public function getV() |
||
460 | { |
||
461 | return new Matrix($this->V); |
||
462 | } |
||
463 | |||
464 | /** |
||
465 | * Return the one-dimensional array of singular values. |
||
466 | * |
||
467 | * @return diagonal of S |
||
468 | */ |
||
469 | public function getSingularValues() |
||
470 | { |
||
471 | return $this->s; |
||
472 | } |
||
473 | |||
474 | /** |
||
475 | * Return the diagonal matrix of singular values. |
||
476 | * |
||
477 | * @return S |
||
478 | */ |
||
479 | public function getS() |
||
489 | } |
||
490 | |||
491 | /** |
||
492 | * Two norm. |
||
493 | * |
||
494 | * @return max(S) |
||
495 | */ |
||
496 | public function norm2() |
||
497 | { |
||
498 | return $this->s[0]; |
||
499 | } |
||
500 | |||
501 | /** |
||
502 | * Two norm condition number. |
||
503 | * |
||
504 | * @return max(S)/min(S) |
||
505 | */ |
||
506 | public function cond() |
||
507 | { |
||
508 | return $this->s[0] / $this->s[min($this->m, $this->n) - 1]; |
||
509 | } |
||
510 | |||
511 | /** |
||
512 | * Effective numerical matrix rank. |
||
513 | * |
||
514 | * @return Number of nonnegligible singular values |
||
515 | */ |
||
516 | public function rank() |
||
528 | } |
||
529 | } |
||
530 |
The issue could also be caused by a filter entry in the build configuration. If the path has been excluded in your configuration, e.g.
excluded_paths: ["lib/*"]
, you can move it to the dependency path list as follows:For further information see https://scrutinizer-ci.com/docs/tools/php/php-scrutinizer/#list-dependency-paths