Total Complexity | 291 |
Total Lines | 2691 |
Duplicated Lines | 13.82 % |
Coverage | 89.03% |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like Engineering often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use Engineering, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
5 | class Engineering |
||
6 | { |
||
7 | /** |
||
8 | * EULER. |
||
9 | */ |
||
10 | const EULER = 2.71828182845904523536; |
||
11 | |||
12 | /** |
||
13 | * Details of the Units of measure that can be used in CONVERTUOM(). |
||
14 | * |
||
15 | * @var mixed[] |
||
16 | */ |
||
17 | private static $conversionUnits = [ |
||
18 | 'g' => ['Group' => 'Mass', 'Unit Name' => 'Gram', 'AllowPrefix' => true], |
||
19 | 'sg' => ['Group' => 'Mass', 'Unit Name' => 'Slug', 'AllowPrefix' => false], |
||
20 | 'lbm' => ['Group' => 'Mass', 'Unit Name' => 'Pound mass (avoirdupois)', 'AllowPrefix' => false], |
||
21 | 'u' => ['Group' => 'Mass', 'Unit Name' => 'U (atomic mass unit)', 'AllowPrefix' => true], |
||
22 | 'ozm' => ['Group' => 'Mass', 'Unit Name' => 'Ounce mass (avoirdupois)', 'AllowPrefix' => false], |
||
23 | 'm' => ['Group' => 'Distance', 'Unit Name' => 'Meter', 'AllowPrefix' => true], |
||
24 | 'mi' => ['Group' => 'Distance', 'Unit Name' => 'Statute mile', 'AllowPrefix' => false], |
||
25 | 'Nmi' => ['Group' => 'Distance', 'Unit Name' => 'Nautical mile', 'AllowPrefix' => false], |
||
26 | 'in' => ['Group' => 'Distance', 'Unit Name' => 'Inch', 'AllowPrefix' => false], |
||
27 | 'ft' => ['Group' => 'Distance', 'Unit Name' => 'Foot', 'AllowPrefix' => false], |
||
28 | 'yd' => ['Group' => 'Distance', 'Unit Name' => 'Yard', 'AllowPrefix' => false], |
||
29 | 'ang' => ['Group' => 'Distance', 'Unit Name' => 'Angstrom', 'AllowPrefix' => true], |
||
30 | 'Pica' => ['Group' => 'Distance', 'Unit Name' => 'Pica (1/72 in)', 'AllowPrefix' => false], |
||
31 | 'yr' => ['Group' => 'Time', 'Unit Name' => 'Year', 'AllowPrefix' => false], |
||
32 | 'day' => ['Group' => 'Time', 'Unit Name' => 'Day', 'AllowPrefix' => false], |
||
33 | 'hr' => ['Group' => 'Time', 'Unit Name' => 'Hour', 'AllowPrefix' => false], |
||
34 | 'mn' => ['Group' => 'Time', 'Unit Name' => 'Minute', 'AllowPrefix' => false], |
||
35 | 'sec' => ['Group' => 'Time', 'Unit Name' => 'Second', 'AllowPrefix' => true], |
||
36 | 'Pa' => ['Group' => 'Pressure', 'Unit Name' => 'Pascal', 'AllowPrefix' => true], |
||
37 | 'p' => ['Group' => 'Pressure', 'Unit Name' => 'Pascal', 'AllowPrefix' => true], |
||
38 | 'atm' => ['Group' => 'Pressure', 'Unit Name' => 'Atmosphere', 'AllowPrefix' => true], |
||
39 | 'at' => ['Group' => 'Pressure', 'Unit Name' => 'Atmosphere', 'AllowPrefix' => true], |
||
40 | 'mmHg' => ['Group' => 'Pressure', 'Unit Name' => 'mm of Mercury', 'AllowPrefix' => true], |
||
41 | 'N' => ['Group' => 'Force', 'Unit Name' => 'Newton', 'AllowPrefix' => true], |
||
42 | 'dyn' => ['Group' => 'Force', 'Unit Name' => 'Dyne', 'AllowPrefix' => true], |
||
43 | 'dy' => ['Group' => 'Force', 'Unit Name' => 'Dyne', 'AllowPrefix' => true], |
||
44 | 'lbf' => ['Group' => 'Force', 'Unit Name' => 'Pound force', 'AllowPrefix' => false], |
||
45 | 'J' => ['Group' => 'Energy', 'Unit Name' => 'Joule', 'AllowPrefix' => true], |
||
46 | 'e' => ['Group' => 'Energy', 'Unit Name' => 'Erg', 'AllowPrefix' => true], |
||
47 | 'c' => ['Group' => 'Energy', 'Unit Name' => 'Thermodynamic calorie', 'AllowPrefix' => true], |
||
48 | 'cal' => ['Group' => 'Energy', 'Unit Name' => 'IT calorie', 'AllowPrefix' => true], |
||
49 | 'eV' => ['Group' => 'Energy', 'Unit Name' => 'Electron volt', 'AllowPrefix' => true], |
||
50 | 'ev' => ['Group' => 'Energy', 'Unit Name' => 'Electron volt', 'AllowPrefix' => true], |
||
51 | 'HPh' => ['Group' => 'Energy', 'Unit Name' => 'Horsepower-hour', 'AllowPrefix' => false], |
||
52 | 'hh' => ['Group' => 'Energy', 'Unit Name' => 'Horsepower-hour', 'AllowPrefix' => false], |
||
53 | 'Wh' => ['Group' => 'Energy', 'Unit Name' => 'Watt-hour', 'AllowPrefix' => true], |
||
54 | 'wh' => ['Group' => 'Energy', 'Unit Name' => 'Watt-hour', 'AllowPrefix' => true], |
||
55 | 'flb' => ['Group' => 'Energy', 'Unit Name' => 'Foot-pound', 'AllowPrefix' => false], |
||
56 | 'BTU' => ['Group' => 'Energy', 'Unit Name' => 'BTU', 'AllowPrefix' => false], |
||
57 | 'btu' => ['Group' => 'Energy', 'Unit Name' => 'BTU', 'AllowPrefix' => false], |
||
58 | 'HP' => ['Group' => 'Power', 'Unit Name' => 'Horsepower', 'AllowPrefix' => false], |
||
59 | 'h' => ['Group' => 'Power', 'Unit Name' => 'Horsepower', 'AllowPrefix' => false], |
||
60 | 'W' => ['Group' => 'Power', 'Unit Name' => 'Watt', 'AllowPrefix' => true], |
||
61 | 'w' => ['Group' => 'Power', 'Unit Name' => 'Watt', 'AllowPrefix' => true], |
||
62 | 'T' => ['Group' => 'Magnetism', 'Unit Name' => 'Tesla', 'AllowPrefix' => true], |
||
63 | 'ga' => ['Group' => 'Magnetism', 'Unit Name' => 'Gauss', 'AllowPrefix' => true], |
||
64 | 'C' => ['Group' => 'Temperature', 'Unit Name' => 'Celsius', 'AllowPrefix' => false], |
||
65 | 'cel' => ['Group' => 'Temperature', 'Unit Name' => 'Celsius', 'AllowPrefix' => false], |
||
66 | 'F' => ['Group' => 'Temperature', 'Unit Name' => 'Fahrenheit', 'AllowPrefix' => false], |
||
67 | 'fah' => ['Group' => 'Temperature', 'Unit Name' => 'Fahrenheit', 'AllowPrefix' => false], |
||
68 | 'K' => ['Group' => 'Temperature', 'Unit Name' => 'Kelvin', 'AllowPrefix' => false], |
||
69 | 'kel' => ['Group' => 'Temperature', 'Unit Name' => 'Kelvin', 'AllowPrefix' => false], |
||
70 | 'tsp' => ['Group' => 'Liquid', 'Unit Name' => 'Teaspoon', 'AllowPrefix' => false], |
||
71 | 'tbs' => ['Group' => 'Liquid', 'Unit Name' => 'Tablespoon', 'AllowPrefix' => false], |
||
72 | 'oz' => ['Group' => 'Liquid', 'Unit Name' => 'Fluid Ounce', 'AllowPrefix' => false], |
||
73 | 'cup' => ['Group' => 'Liquid', 'Unit Name' => 'Cup', 'AllowPrefix' => false], |
||
74 | 'pt' => ['Group' => 'Liquid', 'Unit Name' => 'U.S. Pint', 'AllowPrefix' => false], |
||
75 | 'us_pt' => ['Group' => 'Liquid', 'Unit Name' => 'U.S. Pint', 'AllowPrefix' => false], |
||
76 | 'uk_pt' => ['Group' => 'Liquid', 'Unit Name' => 'U.K. Pint', 'AllowPrefix' => false], |
||
77 | 'qt' => ['Group' => 'Liquid', 'Unit Name' => 'Quart', 'AllowPrefix' => false], |
||
78 | 'gal' => ['Group' => 'Liquid', 'Unit Name' => 'Gallon', 'AllowPrefix' => false], |
||
79 | 'l' => ['Group' => 'Liquid', 'Unit Name' => 'Litre', 'AllowPrefix' => true], |
||
80 | 'lt' => ['Group' => 'Liquid', 'Unit Name' => 'Litre', 'AllowPrefix' => true], |
||
81 | ]; |
||
82 | |||
83 | /** |
||
84 | * Details of the Multiplier prefixes that can be used with Units of Measure in CONVERTUOM(). |
||
85 | * |
||
86 | * @var mixed[] |
||
87 | */ |
||
88 | private static $conversionMultipliers = [ |
||
89 | 'Y' => ['multiplier' => 1E24, 'name' => 'yotta'], |
||
90 | 'Z' => ['multiplier' => 1E21, 'name' => 'zetta'], |
||
91 | 'E' => ['multiplier' => 1E18, 'name' => 'exa'], |
||
92 | 'P' => ['multiplier' => 1E15, 'name' => 'peta'], |
||
93 | 'T' => ['multiplier' => 1E12, 'name' => 'tera'], |
||
94 | 'G' => ['multiplier' => 1E9, 'name' => 'giga'], |
||
95 | 'M' => ['multiplier' => 1E6, 'name' => 'mega'], |
||
96 | 'k' => ['multiplier' => 1E3, 'name' => 'kilo'], |
||
97 | 'h' => ['multiplier' => 1E2, 'name' => 'hecto'], |
||
98 | 'e' => ['multiplier' => 1E1, 'name' => 'deka'], |
||
99 | 'd' => ['multiplier' => 1E-1, 'name' => 'deci'], |
||
100 | 'c' => ['multiplier' => 1E-2, 'name' => 'centi'], |
||
101 | 'm' => ['multiplier' => 1E-3, 'name' => 'milli'], |
||
102 | 'u' => ['multiplier' => 1E-6, 'name' => 'micro'], |
||
103 | 'n' => ['multiplier' => 1E-9, 'name' => 'nano'], |
||
104 | 'p' => ['multiplier' => 1E-12, 'name' => 'pico'], |
||
105 | 'f' => ['multiplier' => 1E-15, 'name' => 'femto'], |
||
106 | 'a' => ['multiplier' => 1E-18, 'name' => 'atto'], |
||
107 | 'z' => ['multiplier' => 1E-21, 'name' => 'zepto'], |
||
108 | 'y' => ['multiplier' => 1E-24, 'name' => 'yocto'], |
||
109 | ]; |
||
110 | |||
111 | /** |
||
112 | * Details of the Units of measure conversion factors, organised by group. |
||
113 | * |
||
114 | * @var mixed[] |
||
115 | */ |
||
116 | private static $unitConversions = [ |
||
117 | 'Mass' => [ |
||
118 | 'g' => [ |
||
119 | 'g' => 1.0, |
||
120 | 'sg' => 6.85220500053478E-05, |
||
121 | 'lbm' => 2.20462291469134E-03, |
||
122 | 'u' => 6.02217000000000E+23, |
||
123 | 'ozm' => 3.52739718003627E-02, |
||
124 | ], |
||
125 | 'sg' => [ |
||
126 | 'g' => 1.45938424189287E+04, |
||
127 | 'sg' => 1.0, |
||
128 | 'lbm' => 3.21739194101647E+01, |
||
129 | 'u' => 8.78866000000000E+27, |
||
130 | 'ozm' => 5.14782785944229E+02, |
||
131 | ], |
||
132 | 'lbm' => [ |
||
133 | 'g' => 4.5359230974881148E+02, |
||
134 | 'sg' => 3.10810749306493E-02, |
||
135 | 'lbm' => 1.0, |
||
136 | 'u' => 2.73161000000000E+26, |
||
137 | 'ozm' => 1.60000023429410E+01, |
||
138 | ], |
||
139 | 'u' => [ |
||
140 | 'g' => 1.66053100460465E-24, |
||
141 | 'sg' => 1.13782988532950E-28, |
||
142 | 'lbm' => 3.66084470330684E-27, |
||
143 | 'u' => 1.0, |
||
144 | 'ozm' => 5.85735238300524E-26, |
||
145 | ], |
||
146 | 'ozm' => [ |
||
147 | 'g' => 2.83495152079732E+01, |
||
148 | 'sg' => 1.94256689870811E-03, |
||
149 | 'lbm' => 6.24999908478882E-02, |
||
150 | 'u' => 1.70725600000000E+25, |
||
151 | 'ozm' => 1.0, |
||
152 | ], |
||
153 | ], |
||
154 | 'Distance' => [ |
||
155 | 'm' => [ |
||
156 | 'm' => 1.0, |
||
157 | 'mi' => 6.21371192237334E-04, |
||
158 | 'Nmi' => 5.39956803455724E-04, |
||
159 | 'in' => 3.93700787401575E+01, |
||
160 | 'ft' => 3.28083989501312E+00, |
||
161 | 'yd' => 1.09361329797891E+00, |
||
162 | 'ang' => 1.00000000000000E+10, |
||
163 | 'Pica' => 2.83464566929116E+03, |
||
164 | ], |
||
165 | 'mi' => [ |
||
166 | 'm' => 1.60934400000000E+03, |
||
167 | 'mi' => 1.0, |
||
168 | 'Nmi' => 8.68976241900648E-01, |
||
169 | 'in' => 6.33600000000000E+04, |
||
170 | 'ft' => 5.28000000000000E+03, |
||
171 | 'yd' => 1.76000000000000E+03, |
||
172 | 'ang' => 1.60934400000000E+13, |
||
173 | 'Pica' => 4.56191999999971E+06, |
||
174 | ], |
||
175 | 'Nmi' => [ |
||
176 | 'm' => 1.85200000000000E+03, |
||
177 | 'mi' => 1.15077944802354E+00, |
||
178 | 'Nmi' => 1.0, |
||
179 | 'in' => 7.29133858267717E+04, |
||
180 | 'ft' => 6.07611548556430E+03, |
||
181 | 'yd' => 2.02537182785694E+03, |
||
182 | 'ang' => 1.85200000000000E+13, |
||
183 | 'Pica' => 5.24976377952723E+06, |
||
184 | ], |
||
185 | 'in' => [ |
||
186 | 'm' => 2.54000000000000E-02, |
||
187 | 'mi' => 1.57828282828283E-05, |
||
188 | 'Nmi' => 1.37149028077754E-05, |
||
189 | 'in' => 1.0, |
||
190 | 'ft' => 8.33333333333333E-02, |
||
191 | 'yd' => 2.77777777686643E-02, |
||
192 | 'ang' => 2.54000000000000E+08, |
||
193 | 'Pica' => 7.19999999999955E+01, |
||
194 | ], |
||
195 | 'ft' => [ |
||
196 | 'm' => 3.04800000000000E-01, |
||
197 | 'mi' => 1.89393939393939E-04, |
||
198 | 'Nmi' => 1.64578833693305E-04, |
||
199 | 'in' => 1.20000000000000E+01, |
||
200 | 'ft' => 1.0, |
||
201 | 'yd' => 3.33333333223972E-01, |
||
202 | 'ang' => 3.04800000000000E+09, |
||
203 | 'Pica' => 8.63999999999946E+02, |
||
204 | ], |
||
205 | 'yd' => [ |
||
206 | 'm' => 9.14400000300000E-01, |
||
207 | 'mi' => 5.68181818368230E-04, |
||
208 | 'Nmi' => 4.93736501241901E-04, |
||
209 | 'in' => 3.60000000118110E+01, |
||
210 | 'ft' => 3.00000000000000E+00, |
||
211 | 'yd' => 1.0, |
||
212 | 'ang' => 9.14400000300000E+09, |
||
213 | 'Pica' => 2.59200000085023E+03, |
||
214 | ], |
||
215 | 'ang' => [ |
||
216 | 'm' => 1.00000000000000E-10, |
||
217 | 'mi' => 6.21371192237334E-14, |
||
218 | 'Nmi' => 5.39956803455724E-14, |
||
219 | 'in' => 3.93700787401575E-09, |
||
220 | 'ft' => 3.28083989501312E-10, |
||
221 | 'yd' => 1.09361329797891E-10, |
||
222 | 'ang' => 1.0, |
||
223 | 'Pica' => 2.83464566929116E-07, |
||
224 | ], |
||
225 | 'Pica' => [ |
||
226 | 'm' => 3.52777777777800E-04, |
||
227 | 'mi' => 2.19205948372629E-07, |
||
228 | 'Nmi' => 1.90484761219114E-07, |
||
229 | 'in' => 1.38888888888898E-02, |
||
230 | 'ft' => 1.15740740740748E-03, |
||
231 | 'yd' => 3.85802469009251E-04, |
||
232 | 'ang' => 3.52777777777800E+06, |
||
233 | 'Pica' => 1.0, |
||
234 | ], |
||
235 | ], |
||
236 | 'Time' => [ |
||
237 | 'yr' => [ |
||
238 | 'yr' => 1.0, |
||
239 | 'day' => 365.25, |
||
240 | 'hr' => 8766.0, |
||
241 | 'mn' => 525960.0, |
||
242 | 'sec' => 31557600.0, |
||
243 | ], |
||
244 | 'day' => [ |
||
245 | 'yr' => 2.73785078713210E-03, |
||
246 | 'day' => 1.0, |
||
247 | 'hr' => 24.0, |
||
248 | 'mn' => 1440.0, |
||
249 | 'sec' => 86400.0, |
||
250 | ], |
||
251 | 'hr' => [ |
||
252 | 'yr' => 1.14077116130504E-04, |
||
253 | 'day' => 4.16666666666667E-02, |
||
254 | 'hr' => 1.0, |
||
255 | 'mn' => 60.0, |
||
256 | 'sec' => 3600.0, |
||
257 | ], |
||
258 | 'mn' => [ |
||
259 | 'yr' => 1.90128526884174E-06, |
||
260 | 'day' => 6.94444444444444E-04, |
||
261 | 'hr' => 1.66666666666667E-02, |
||
262 | 'mn' => 1.0, |
||
263 | 'sec' => 60.0, |
||
264 | ], |
||
265 | 'sec' => [ |
||
266 | 'yr' => 3.16880878140289E-08, |
||
267 | 'day' => 1.15740740740741E-05, |
||
268 | 'hr' => 2.77777777777778E-04, |
||
269 | 'mn' => 1.66666666666667E-02, |
||
270 | 'sec' => 1.0, |
||
271 | ], |
||
272 | ], |
||
273 | 'Pressure' => [ |
||
274 | 'Pa' => [ |
||
275 | 'Pa' => 1.0, |
||
276 | 'p' => 1.0, |
||
277 | 'atm' => 9.86923299998193E-06, |
||
278 | 'at' => 9.86923299998193E-06, |
||
279 | 'mmHg' => 7.50061707998627E-03, |
||
280 | ], |
||
281 | 'p' => [ |
||
282 | 'Pa' => 1.0, |
||
283 | 'p' => 1.0, |
||
284 | 'atm' => 9.86923299998193E-06, |
||
285 | 'at' => 9.86923299998193E-06, |
||
286 | 'mmHg' => 7.50061707998627E-03, |
||
287 | ], |
||
288 | 'atm' => [ |
||
289 | 'Pa' => 1.01324996583000E+05, |
||
290 | 'p' => 1.01324996583000E+05, |
||
291 | 'atm' => 1.0, |
||
292 | 'at' => 1.0, |
||
293 | 'mmHg' => 760.0, |
||
294 | ], |
||
295 | 'at' => [ |
||
296 | 'Pa' => 1.01324996583000E+05, |
||
297 | 'p' => 1.01324996583000E+05, |
||
298 | 'atm' => 1.0, |
||
299 | 'at' => 1.0, |
||
300 | 'mmHg' => 760.0, |
||
301 | ], |
||
302 | 'mmHg' => [ |
||
303 | 'Pa' => 1.33322363925000E+02, |
||
304 | 'p' => 1.33322363925000E+02, |
||
305 | 'atm' => 1.31578947368421E-03, |
||
306 | 'at' => 1.31578947368421E-03, |
||
307 | 'mmHg' => 1.0, |
||
308 | ], |
||
309 | ], |
||
310 | 'Force' => [ |
||
311 | 'N' => [ |
||
312 | 'N' => 1.0, |
||
313 | 'dyn' => 1.0E+5, |
||
314 | 'dy' => 1.0E+5, |
||
315 | 'lbf' => 2.24808923655339E-01, |
||
316 | ], |
||
317 | 'dyn' => [ |
||
318 | 'N' => 1.0E-5, |
||
319 | 'dyn' => 1.0, |
||
320 | 'dy' => 1.0, |
||
321 | 'lbf' => 2.24808923655339E-06, |
||
322 | ], |
||
323 | 'dy' => [ |
||
324 | 'N' => 1.0E-5, |
||
325 | 'dyn' => 1.0, |
||
326 | 'dy' => 1.0, |
||
327 | 'lbf' => 2.24808923655339E-06, |
||
328 | ], |
||
329 | 'lbf' => [ |
||
330 | 'N' => 4.448222, |
||
331 | 'dyn' => 4.448222E+5, |
||
332 | 'dy' => 4.448222E+5, |
||
333 | 'lbf' => 1.0, |
||
334 | ], |
||
335 | ], |
||
336 | 'Energy' => [ |
||
337 | 'J' => [ |
||
338 | 'J' => 1.0, |
||
339 | 'e' => 9.99999519343231E+06, |
||
340 | 'c' => 2.39006249473467E-01, |
||
341 | 'cal' => 2.38846190642017E-01, |
||
342 | 'eV' => 6.24145700000000E+18, |
||
343 | 'ev' => 6.24145700000000E+18, |
||
344 | 'HPh' => 3.72506430801000E-07, |
||
345 | 'hh' => 3.72506430801000E-07, |
||
346 | 'Wh' => 2.77777916238711E-04, |
||
347 | 'wh' => 2.77777916238711E-04, |
||
348 | 'flb' => 2.37304222192651E+01, |
||
349 | 'BTU' => 9.47815067349015E-04, |
||
350 | 'btu' => 9.47815067349015E-04, |
||
351 | ], |
||
352 | 'e' => [ |
||
353 | 'J' => 1.00000048065700E-07, |
||
354 | 'e' => 1.0, |
||
355 | 'c' => 2.39006364353494E-08, |
||
356 | 'cal' => 2.38846305445111E-08, |
||
357 | 'eV' => 6.24146000000000E+11, |
||
358 | 'ev' => 6.24146000000000E+11, |
||
359 | 'HPh' => 3.72506609848824E-14, |
||
360 | 'hh' => 3.72506609848824E-14, |
||
361 | 'Wh' => 2.77778049754611E-11, |
||
362 | 'wh' => 2.77778049754611E-11, |
||
363 | 'flb' => 2.37304336254586E-06, |
||
364 | 'BTU' => 9.47815522922962E-11, |
||
365 | 'btu' => 9.47815522922962E-11, |
||
366 | ], |
||
367 | 'c' => [ |
||
368 | 'J' => 4.18399101363672E+00, |
||
369 | 'e' => 4.18398900257312E+07, |
||
370 | 'c' => 1.0, |
||
371 | 'cal' => 9.99330315287563E-01, |
||
372 | 'eV' => 2.61142000000000E+19, |
||
373 | 'ev' => 2.61142000000000E+19, |
||
374 | 'HPh' => 1.55856355899327E-06, |
||
375 | 'hh' => 1.55856355899327E-06, |
||
376 | 'Wh' => 1.16222030532950E-03, |
||
377 | 'wh' => 1.16222030532950E-03, |
||
378 | 'flb' => 9.92878733152102E+01, |
||
379 | 'BTU' => 3.96564972437776E-03, |
||
380 | 'btu' => 3.96564972437776E-03, |
||
381 | ], |
||
382 | 'cal' => [ |
||
383 | 'J' => 4.18679484613929E+00, |
||
384 | 'e' => 4.18679283372801E+07, |
||
385 | 'c' => 1.00067013349059E+00, |
||
386 | 'cal' => 1.0, |
||
387 | 'eV' => 2.61317000000000E+19, |
||
388 | 'ev' => 2.61317000000000E+19, |
||
389 | 'HPh' => 1.55960800463137E-06, |
||
390 | 'hh' => 1.55960800463137E-06, |
||
391 | 'Wh' => 1.16299914807955E-03, |
||
392 | 'wh' => 1.16299914807955E-03, |
||
393 | 'flb' => 9.93544094443283E+01, |
||
394 | 'BTU' => 3.96830723907002E-03, |
||
395 | 'btu' => 3.96830723907002E-03, |
||
396 | ], |
||
397 | 'eV' => [ |
||
398 | 'J' => 1.60219000146921E-19, |
||
399 | 'e' => 1.60218923136574E-12, |
||
400 | 'c' => 3.82933423195043E-20, |
||
401 | 'cal' => 3.82676978535648E-20, |
||
402 | 'eV' => 1.0, |
||
403 | 'ev' => 1.0, |
||
404 | 'HPh' => 5.96826078912344E-26, |
||
405 | 'hh' => 5.96826078912344E-26, |
||
406 | 'Wh' => 4.45053000026614E-23, |
||
407 | 'wh' => 4.45053000026614E-23, |
||
408 | 'flb' => 3.80206452103492E-18, |
||
409 | 'BTU' => 1.51857982414846E-22, |
||
410 | 'btu' => 1.51857982414846E-22, |
||
411 | ], |
||
412 | 'ev' => [ |
||
413 | 'J' => 1.60219000146921E-19, |
||
414 | 'e' => 1.60218923136574E-12, |
||
415 | 'c' => 3.82933423195043E-20, |
||
416 | 'cal' => 3.82676978535648E-20, |
||
417 | 'eV' => 1.0, |
||
418 | 'ev' => 1.0, |
||
419 | 'HPh' => 5.96826078912344E-26, |
||
420 | 'hh' => 5.96826078912344E-26, |
||
421 | 'Wh' => 4.45053000026614E-23, |
||
422 | 'wh' => 4.45053000026614E-23, |
||
423 | 'flb' => 3.80206452103492E-18, |
||
424 | 'BTU' => 1.51857982414846E-22, |
||
425 | 'btu' => 1.51857982414846E-22, |
||
426 | ], |
||
427 | 'HPh' => [ |
||
428 | 'J' => 2.68451741316170E+06, |
||
429 | 'e' => 2.68451612283024E+13, |
||
430 | 'c' => 6.41616438565991E+05, |
||
431 | 'cal' => 6.41186757845835E+05, |
||
432 | 'eV' => 1.67553000000000E+25, |
||
433 | 'ev' => 1.67553000000000E+25, |
||
434 | 'HPh' => 1.0, |
||
435 | 'hh' => 1.0, |
||
436 | 'Wh' => 7.45699653134593E+02, |
||
437 | 'wh' => 7.45699653134593E+02, |
||
438 | 'flb' => 6.37047316692964E+07, |
||
439 | 'BTU' => 2.54442605275546E+03, |
||
440 | 'btu' => 2.54442605275546E+03, |
||
441 | ], |
||
442 | 'hh' => [ |
||
443 | 'J' => 2.68451741316170E+06, |
||
444 | 'e' => 2.68451612283024E+13, |
||
445 | 'c' => 6.41616438565991E+05, |
||
446 | 'cal' => 6.41186757845835E+05, |
||
447 | 'eV' => 1.67553000000000E+25, |
||
448 | 'ev' => 1.67553000000000E+25, |
||
449 | 'HPh' => 1.0, |
||
450 | 'hh' => 1.0, |
||
451 | 'Wh' => 7.45699653134593E+02, |
||
452 | 'wh' => 7.45699653134593E+02, |
||
453 | 'flb' => 6.37047316692964E+07, |
||
454 | 'BTU' => 2.54442605275546E+03, |
||
455 | 'btu' => 2.54442605275546E+03, |
||
456 | ], |
||
457 | 'Wh' => [ |
||
458 | 'J' => 3.59999820554720E+03, |
||
459 | 'e' => 3.59999647518369E+10, |
||
460 | 'c' => 8.60422069219046E+02, |
||
461 | 'cal' => 8.59845857713046E+02, |
||
462 | 'eV' => 2.24692340000000E+22, |
||
463 | 'ev' => 2.24692340000000E+22, |
||
464 | 'HPh' => 1.34102248243839E-03, |
||
465 | 'hh' => 1.34102248243839E-03, |
||
466 | 'Wh' => 1.0, |
||
467 | 'wh' => 1.0, |
||
468 | 'flb' => 8.54294774062316E+04, |
||
469 | 'BTU' => 3.41213254164705E+00, |
||
470 | 'btu' => 3.41213254164705E+00, |
||
471 | ], |
||
472 | 'wh' => [ |
||
473 | 'J' => 3.59999820554720E+03, |
||
474 | 'e' => 3.59999647518369E+10, |
||
475 | 'c' => 8.60422069219046E+02, |
||
476 | 'cal' => 8.59845857713046E+02, |
||
477 | 'eV' => 2.24692340000000E+22, |
||
478 | 'ev' => 2.24692340000000E+22, |
||
479 | 'HPh' => 1.34102248243839E-03, |
||
480 | 'hh' => 1.34102248243839E-03, |
||
481 | 'Wh' => 1.0, |
||
482 | 'wh' => 1.0, |
||
483 | 'flb' => 8.54294774062316E+04, |
||
484 | 'BTU' => 3.41213254164705E+00, |
||
485 | 'btu' => 3.41213254164705E+00, |
||
486 | ], |
||
487 | 'flb' => [ |
||
488 | 'J' => 4.21400003236424E-02, |
||
489 | 'e' => 4.21399800687660E+05, |
||
490 | 'c' => 1.00717234301644E-02, |
||
491 | 'cal' => 1.00649785509554E-02, |
||
492 | 'eV' => 2.63015000000000E+17, |
||
493 | 'ev' => 2.63015000000000E+17, |
||
494 | 'HPh' => 1.56974211145130E-08, |
||
495 | 'hh' => 1.56974211145130E-08, |
||
496 | 'Wh' => 1.17055614802000E-05, |
||
497 | 'wh' => 1.17055614802000E-05, |
||
498 | 'flb' => 1.0, |
||
499 | 'BTU' => 3.99409272448406E-05, |
||
500 | 'btu' => 3.99409272448406E-05, |
||
501 | ], |
||
502 | 'BTU' => [ |
||
503 | 'J' => 1.05505813786749E+03, |
||
504 | 'e' => 1.05505763074665E+10, |
||
505 | 'c' => 2.52165488508168E+02, |
||
506 | 'cal' => 2.51996617135510E+02, |
||
507 | 'eV' => 6.58510000000000E+21, |
||
508 | 'ev' => 6.58510000000000E+21, |
||
509 | 'HPh' => 3.93015941224568E-04, |
||
510 | 'hh' => 3.93015941224568E-04, |
||
511 | 'Wh' => 2.93071851047526E-01, |
||
512 | 'wh' => 2.93071851047526E-01, |
||
513 | 'flb' => 2.50369750774671E+04, |
||
514 | 'BTU' => 1.0, |
||
515 | 'btu' => 1.0, |
||
516 | ], |
||
517 | 'btu' => [ |
||
518 | 'J' => 1.05505813786749E+03, |
||
519 | 'e' => 1.05505763074665E+10, |
||
520 | 'c' => 2.52165488508168E+02, |
||
521 | 'cal' => 2.51996617135510E+02, |
||
522 | 'eV' => 6.58510000000000E+21, |
||
523 | 'ev' => 6.58510000000000E+21, |
||
524 | 'HPh' => 3.93015941224568E-04, |
||
525 | 'hh' => 3.93015941224568E-04, |
||
526 | 'Wh' => 2.93071851047526E-01, |
||
527 | 'wh' => 2.93071851047526E-01, |
||
528 | 'flb' => 2.50369750774671E+04, |
||
529 | 'BTU' => 1.0, |
||
530 | 'btu' => 1.0, |
||
531 | ], |
||
532 | ], |
||
533 | 'Power' => [ |
||
534 | 'HP' => [ |
||
535 | 'HP' => 1.0, |
||
536 | 'h' => 1.0, |
||
537 | 'W' => 7.45701000000000E+02, |
||
538 | 'w' => 7.45701000000000E+02, |
||
539 | ], |
||
540 | 'h' => [ |
||
541 | 'HP' => 1.0, |
||
542 | 'h' => 1.0, |
||
543 | 'W' => 7.45701000000000E+02, |
||
544 | 'w' => 7.45701000000000E+02, |
||
545 | ], |
||
546 | 'W' => [ |
||
547 | 'HP' => 1.34102006031908E-03, |
||
548 | 'h' => 1.34102006031908E-03, |
||
549 | 'W' => 1.0, |
||
550 | 'w' => 1.0, |
||
551 | ], |
||
552 | 'w' => [ |
||
553 | 'HP' => 1.34102006031908E-03, |
||
554 | 'h' => 1.34102006031908E-03, |
||
555 | 'W' => 1.0, |
||
556 | 'w' => 1.0, |
||
557 | ], |
||
558 | ], |
||
559 | 'Magnetism' => [ |
||
560 | 'T' => [ |
||
561 | 'T' => 1.0, |
||
562 | 'ga' => 10000.0, |
||
563 | ], |
||
564 | 'ga' => [ |
||
565 | 'T' => 0.0001, |
||
566 | 'ga' => 1.0, |
||
567 | ], |
||
568 | ], |
||
569 | 'Liquid' => [ |
||
570 | 'tsp' => [ |
||
571 | 'tsp' => 1.0, |
||
572 | 'tbs' => 3.33333333333333E-01, |
||
573 | 'oz' => 1.66666666666667E-01, |
||
574 | 'cup' => 2.08333333333333E-02, |
||
575 | 'pt' => 1.04166666666667E-02, |
||
576 | 'us_pt' => 1.04166666666667E-02, |
||
577 | 'uk_pt' => 8.67558516821960E-03, |
||
578 | 'qt' => 5.20833333333333E-03, |
||
579 | 'gal' => 1.30208333333333E-03, |
||
580 | 'l' => 4.92999408400710E-03, |
||
581 | 'lt' => 4.92999408400710E-03, |
||
582 | ], |
||
583 | 'tbs' => [ |
||
584 | 'tsp' => 3.00000000000000E+00, |
||
585 | 'tbs' => 1.0, |
||
586 | 'oz' => 5.00000000000000E-01, |
||
587 | 'cup' => 6.25000000000000E-02, |
||
588 | 'pt' => 3.12500000000000E-02, |
||
589 | 'us_pt' => 3.12500000000000E-02, |
||
590 | 'uk_pt' => 2.60267555046588E-02, |
||
591 | 'qt' => 1.56250000000000E-02, |
||
592 | 'gal' => 3.90625000000000E-03, |
||
593 | 'l' => 1.47899822520213E-02, |
||
594 | 'lt' => 1.47899822520213E-02, |
||
595 | ], |
||
596 | 'oz' => [ |
||
597 | 'tsp' => 6.00000000000000E+00, |
||
598 | 'tbs' => 2.00000000000000E+00, |
||
599 | 'oz' => 1.0, |
||
600 | 'cup' => 1.25000000000000E-01, |
||
601 | 'pt' => 6.25000000000000E-02, |
||
602 | 'us_pt' => 6.25000000000000E-02, |
||
603 | 'uk_pt' => 5.20535110093176E-02, |
||
604 | 'qt' => 3.12500000000000E-02, |
||
605 | 'gal' => 7.81250000000000E-03, |
||
606 | 'l' => 2.95799645040426E-02, |
||
607 | 'lt' => 2.95799645040426E-02, |
||
608 | ], |
||
609 | 'cup' => [ |
||
610 | 'tsp' => 4.80000000000000E+01, |
||
611 | 'tbs' => 1.60000000000000E+01, |
||
612 | 'oz' => 8.00000000000000E+00, |
||
613 | 'cup' => 1.0, |
||
614 | 'pt' => 5.00000000000000E-01, |
||
615 | 'us_pt' => 5.00000000000000E-01, |
||
616 | 'uk_pt' => 4.16428088074541E-01, |
||
617 | 'qt' => 2.50000000000000E-01, |
||
618 | 'gal' => 6.25000000000000E-02, |
||
619 | 'l' => 2.36639716032341E-01, |
||
620 | 'lt' => 2.36639716032341E-01, |
||
621 | ], |
||
622 | 'pt' => [ |
||
623 | 'tsp' => 9.60000000000000E+01, |
||
624 | 'tbs' => 3.20000000000000E+01, |
||
625 | 'oz' => 1.60000000000000E+01, |
||
626 | 'cup' => 2.00000000000000E+00, |
||
627 | 'pt' => 1.0, |
||
628 | 'us_pt' => 1.0, |
||
629 | 'uk_pt' => 8.32856176149081E-01, |
||
630 | 'qt' => 5.00000000000000E-01, |
||
631 | 'gal' => 1.25000000000000E-01, |
||
632 | 'l' => 4.73279432064682E-01, |
||
633 | 'lt' => 4.73279432064682E-01, |
||
634 | ], |
||
635 | 'us_pt' => [ |
||
636 | 'tsp' => 9.60000000000000E+01, |
||
637 | 'tbs' => 3.20000000000000E+01, |
||
638 | 'oz' => 1.60000000000000E+01, |
||
639 | 'cup' => 2.00000000000000E+00, |
||
640 | 'pt' => 1.0, |
||
641 | 'us_pt' => 1.0, |
||
642 | 'uk_pt' => 8.32856176149081E-01, |
||
643 | 'qt' => 5.00000000000000E-01, |
||
644 | 'gal' => 1.25000000000000E-01, |
||
645 | 'l' => 4.73279432064682E-01, |
||
646 | 'lt' => 4.73279432064682E-01, |
||
647 | ], |
||
648 | 'uk_pt' => [ |
||
649 | 'tsp' => 1.15266000000000E+02, |
||
650 | 'tbs' => 3.84220000000000E+01, |
||
651 | 'oz' => 1.92110000000000E+01, |
||
652 | 'cup' => 2.40137500000000E+00, |
||
653 | 'pt' => 1.20068750000000E+00, |
||
654 | 'us_pt' => 1.20068750000000E+00, |
||
655 | 'uk_pt' => 1.0, |
||
656 | 'qt' => 6.00343750000000E-01, |
||
657 | 'gal' => 1.50085937500000E-01, |
||
658 | 'l' => 5.68260698087162E-01, |
||
659 | 'lt' => 5.68260698087162E-01, |
||
660 | ], |
||
661 | 'qt' => [ |
||
662 | 'tsp' => 1.92000000000000E+02, |
||
663 | 'tbs' => 6.40000000000000E+01, |
||
664 | 'oz' => 3.20000000000000E+01, |
||
665 | 'cup' => 4.00000000000000E+00, |
||
666 | 'pt' => 2.00000000000000E+00, |
||
667 | 'us_pt' => 2.00000000000000E+00, |
||
668 | 'uk_pt' => 1.66571235229816E+00, |
||
669 | 'qt' => 1.0, |
||
670 | 'gal' => 2.50000000000000E-01, |
||
671 | 'l' => 9.46558864129363E-01, |
||
672 | 'lt' => 9.46558864129363E-01, |
||
673 | ], |
||
674 | 'gal' => [ |
||
675 | 'tsp' => 7.68000000000000E+02, |
||
676 | 'tbs' => 2.56000000000000E+02, |
||
677 | 'oz' => 1.28000000000000E+02, |
||
678 | 'cup' => 1.60000000000000E+01, |
||
679 | 'pt' => 8.00000000000000E+00, |
||
680 | 'us_pt' => 8.00000000000000E+00, |
||
681 | 'uk_pt' => 6.66284940919265E+00, |
||
682 | 'qt' => 4.00000000000000E+00, |
||
683 | 'gal' => 1.0, |
||
684 | 'l' => 3.78623545651745E+00, |
||
685 | 'lt' => 3.78623545651745E+00, |
||
686 | ], |
||
687 | 'l' => [ |
||
688 | 'tsp' => 2.02840000000000E+02, |
||
689 | 'tbs' => 6.76133333333333E+01, |
||
690 | 'oz' => 3.38066666666667E+01, |
||
691 | 'cup' => 4.22583333333333E+00, |
||
692 | 'pt' => 2.11291666666667E+00, |
||
693 | 'us_pt' => 2.11291666666667E+00, |
||
694 | 'uk_pt' => 1.75975569552166E+00, |
||
695 | 'qt' => 1.05645833333333E+00, |
||
696 | 'gal' => 2.64114583333333E-01, |
||
697 | 'l' => 1.0, |
||
698 | 'lt' => 1.0, |
||
699 | ], |
||
700 | 'lt' => [ |
||
701 | 'tsp' => 2.02840000000000E+02, |
||
702 | 'tbs' => 6.76133333333333E+01, |
||
703 | 'oz' => 3.38066666666667E+01, |
||
704 | 'cup' => 4.22583333333333E+00, |
||
705 | 'pt' => 2.11291666666667E+00, |
||
706 | 'us_pt' => 2.11291666666667E+00, |
||
707 | 'uk_pt' => 1.75975569552166E+00, |
||
708 | 'qt' => 1.05645833333333E+00, |
||
709 | 'gal' => 2.64114583333333E-01, |
||
710 | 'l' => 1.0, |
||
711 | 'lt' => 1.0, |
||
712 | ], |
||
713 | ], |
||
714 | ]; |
||
715 | |||
716 | /** |
||
717 | * parseComplex. |
||
718 | * |
||
719 | * Parses a complex number into its real and imaginary parts, and an I or J suffix |
||
720 | * |
||
721 | * @param string $complexNumber The complex number |
||
722 | * |
||
723 | * @return string[] Indexed on "real", "imaginary" and "suffix" |
||
724 | */ |
||
725 | 354 | public static function parseComplex($complexNumber) |
|
726 | { |
||
727 | 354 | $workString = (string) $complexNumber; |
|
728 | |||
729 | 354 | $realNumber = $imaginary = 0; |
|
|
|||
730 | // Extract the suffix, if there is one |
||
731 | 354 | $suffix = substr($workString, -1); |
|
732 | 354 | if (!is_numeric($suffix)) { |
|
733 | 289 | $workString = substr($workString, 0, -1); |
|
734 | } else { |
||
735 | 142 | $suffix = ''; |
|
736 | } |
||
737 | |||
738 | // Split the input into its Real and Imaginary components |
||
739 | 354 | $leadingSign = 0; |
|
740 | 354 | if (strlen($workString) > 0) { |
|
1 ignored issue
–
show
|
|||
741 | 345 | $leadingSign = (($workString[0] == '+') || ($workString[0] == '-')) ? 1 : 0; |
|
742 | } |
||
743 | 354 | $power = ''; |
|
744 | 354 | $realNumber = strtok($workString, '+-'); |
|
1 ignored issue
–
show
|
|||
745 | 354 | if (strtoupper(substr($realNumber, -1)) == 'E') { |
|
1 ignored issue
–
show
|
|||
746 | 8 | $power = strtok('+-'); |
|
747 | 8 | ++$leadingSign; |
|
748 | } |
||
749 | |||
750 | 354 | $realNumber = substr($workString, 0, strlen($realNumber) + strlen($power) + $leadingSign); |
|
1 ignored issue
–
show
|
|||
751 | |||
752 | 354 | if ($suffix != '') { |
|
753 | 289 | $imaginary = substr($workString, strlen($realNumber)); |
|
754 | |||
755 | 289 | if (($imaginary == '') && (($realNumber == '') || ($realNumber == '+') || ($realNumber == '-'))) { |
|
756 | 24 | $imaginary = $realNumber . '1'; |
|
1 ignored issue
–
show
|
|||
757 | 24 | $realNumber = '0'; |
|
758 | 269 | } elseif ($imaginary == '') { |
|
759 | 30 | $imaginary = $realNumber; |
|
760 | 30 | $realNumber = '0'; |
|
761 | 243 | } elseif (($imaginary == '+') || ($imaginary == '-')) { |
|
762 | 96 | $imaginary .= '1'; |
|
763 | } |
||
764 | } |
||
765 | |||
766 | return [ |
||
767 | 354 | 'real' => $realNumber, |
|
768 | 354 | 'imaginary' => $imaginary, |
|
769 | 354 | 'suffix' => $suffix, |
|
770 | ]; |
||
771 | } |
||
772 | |||
773 | /** |
||
774 | * Cleans the leading characters in a complex number string. |
||
775 | * |
||
776 | * @param string $complexNumber The complex number to clean |
||
777 | * |
||
778 | * @return string The "cleaned" complex number |
||
779 | */ |
||
780 | 38 | private static function cleanComplex($complexNumber) |
|
781 | { |
||
782 | 38 | if ($complexNumber[0] == '+') { |
|
783 | $complexNumber = substr($complexNumber, 1); |
||
784 | } |
||
785 | 38 | if ($complexNumber[0] == '0') { |
|
786 | 4 | $complexNumber = substr($complexNumber, 1); |
|
1 ignored issue
–
show
|
|||
787 | } |
||
788 | 38 | if ($complexNumber[0] == '.') { |
|
789 | 4 | $complexNumber = '0' . $complexNumber; |
|
1 ignored issue
–
show
|
|||
790 | } |
||
791 | 38 | if ($complexNumber[0] == '+') { |
|
792 | $complexNumber = substr($complexNumber, 1); |
||
793 | } |
||
794 | |||
795 | 38 | return $complexNumber; |
|
796 | } |
||
797 | |||
798 | /** |
||
799 | * Formats a number base string value with leading zeroes. |
||
800 | * |
||
801 | * @param string $xVal The "number" to pad |
||
802 | * @param int $places The length that we want to pad this value |
||
803 | * |
||
804 | * @return string The padded "number" |
||
805 | */ |
||
806 | 82 | private static function nbrConversionFormat($xVal, $places) |
|
807 | { |
||
808 | 82 | if ($places !== null) { |
|
809 | 22 | if (is_numeric($places)) { |
|
810 | 18 | $places = (int) $places; |
|
811 | } else { |
||
812 | 4 | return Functions::VALUE(); |
|
813 | } |
||
814 | 18 | if ($places < 0) { |
|
815 | 4 | return Functions::NAN(); |
|
816 | } |
||
817 | 14 | if (strlen($xVal) <= $places) { |
|
818 | 14 | return substr(str_pad($xVal, $places, '0', STR_PAD_LEFT), -10); |
|
819 | } |
||
820 | |||
821 | return Functions::NAN(); |
||
822 | } |
||
823 | |||
824 | 60 | return substr($xVal, -10); |
|
825 | } |
||
826 | |||
827 | /** |
||
828 | * BESSELI. |
||
829 | * |
||
830 | * Returns the modified Bessel function In(x), which is equivalent to the Bessel function evaluated |
||
831 | * for purely imaginary arguments |
||
832 | * |
||
833 | * Excel Function: |
||
834 | * BESSELI(x,ord) |
||
835 | * |
||
836 | * @category Engineering Functions |
||
837 | * |
||
838 | * @param float $x The value at which to evaluate the function. |
||
839 | * If x is nonnumeric, BESSELI returns the #VALUE! error value. |
||
840 | * @param int $ord The order of the Bessel function. |
||
841 | * If ord is not an integer, it is truncated. |
||
842 | * If $ord is nonnumeric, BESSELI returns the #VALUE! error value. |
||
843 | * If $ord < 0, BESSELI returns the #NUM! error value. |
||
844 | * |
||
845 | * @return float |
||
846 | */ |
||
847 | 74 | public static function BESSELI($x, $ord) |
|
848 | { |
||
849 | 74 | $x = ($x === null) ? 0.0 : Functions::flattenSingleValue($x); |
|
850 | 74 | $ord = ($ord === null) ? 0.0 : Functions::flattenSingleValue($ord); |
|
851 | |||
852 | 74 | if ((is_numeric($x)) && (is_numeric($ord))) { |
|
853 | 70 | $ord = floor($ord); |
|
854 | 70 | if ($ord < 0) { |
|
855 | 2 | return Functions::NAN(); |
|
856 | } |
||
857 | |||
858 | 68 | if (abs($x) <= 30) { |
|
859 | 68 | $fResult = $fTerm = pow($x / 2, $ord) / MathTrig::FACT($ord); |
|
860 | 68 | $ordK = 1; |
|
861 | 68 | $fSqrX = ($x * $x) / 4; |
|
862 | View Code Duplication | do { |
|
863 | 68 | $fTerm *= $fSqrX; |
|
864 | 68 | $fTerm /= ($ordK * ($ordK + $ord)); |
|
865 | 68 | $fResult += $fTerm; |
|
866 | 68 | } while ((abs($fTerm) > 1e-12) && (++$ordK < 100)); |
|
867 | } else { |
||
868 | $f_2_PI = 2 * M_PI; |
||
869 | |||
870 | $fXAbs = abs($x); |
||
871 | $fResult = exp($fXAbs) / sqrt($f_2_PI * $fXAbs); |
||
872 | if (($ord & 1) && ($x < 0)) { |
||
873 | $fResult = -$fResult; |
||
874 | } |
||
875 | } |
||
876 | |||
877 | 68 | return (is_nan($fResult)) ? Functions::NAN() : $fResult; |
|
878 | } |
||
879 | |||
880 | 4 | return Functions::VALUE(); |
|
881 | } |
||
882 | |||
883 | /** |
||
884 | * BESSELJ. |
||
885 | * |
||
886 | * Returns the Bessel function |
||
887 | * |
||
888 | * Excel Function: |
||
889 | * BESSELJ(x,ord) |
||
890 | * |
||
891 | * @category Engineering Functions |
||
892 | * |
||
893 | * @param float $x The value at which to evaluate the function. |
||
894 | * If x is nonnumeric, BESSELJ returns the #VALUE! error value. |
||
895 | * @param int $ord The order of the Bessel function. If n is not an integer, it is truncated. |
||
896 | * If $ord is nonnumeric, BESSELJ returns the #VALUE! error value. |
||
897 | * If $ord < 0, BESSELJ returns the #NUM! error value. |
||
898 | * |
||
899 | * @return float |
||
900 | */ |
||
901 | 50 | public static function BESSELJ($x, $ord) |
|
902 | { |
||
903 | 50 | $x = ($x === null) ? 0.0 : Functions::flattenSingleValue($x); |
|
904 | 50 | $ord = ($ord === null) ? 0.0 : Functions::flattenSingleValue($ord); |
|
905 | |||
906 | 50 | if ((is_numeric($x)) && (is_numeric($ord))) { |
|
907 | 48 | $ord = floor($ord); |
|
908 | 48 | if ($ord < 0) { |
|
909 | 1 | return Functions::NAN(); |
|
910 | } |
||
911 | |||
912 | 47 | $fResult = 0; |
|
913 | 47 | if (abs($x) <= 30) { |
|
914 | 47 | $fResult = $fTerm = pow($x / 2, $ord) / MathTrig::FACT($ord); |
|
915 | 47 | $ordK = 1; |
|
916 | 47 | $fSqrX = ($x * $x) / -4; |
|
917 | View Code Duplication | do { |
|
918 | 47 | $fTerm *= $fSqrX; |
|
919 | 47 | $fTerm /= ($ordK * ($ordK + $ord)); |
|
920 | 47 | $fResult += $fTerm; |
|
921 | 47 | } while ((abs($fTerm) > 1e-12) && (++$ordK < 100)); |
|
922 | } else { |
||
923 | $f_PI_DIV_2 = M_PI / 2; |
||
924 | $f_PI_DIV_4 = M_PI / 4; |
||
925 | |||
926 | $fXAbs = abs($x); |
||
927 | $fResult = sqrt(Functions::M_2DIVPI / $fXAbs) * cos($fXAbs - $ord * $f_PI_DIV_2 - $f_PI_DIV_4); |
||
928 | if (($ord & 1) && ($x < 0)) { |
||
929 | $fResult = -$fResult; |
||
930 | } |
||
931 | } |
||
932 | |||
933 | 47 | return (is_nan($fResult)) ? Functions::NAN() : $fResult; |
|
934 | } |
||
935 | |||
936 | 2 | return Functions::VALUE(); |
|
937 | } |
||
938 | |||
939 | 22 | private static function besselK0($fNum) |
|
940 | { |
||
941 | 22 | if ($fNum <= 2) { |
|
942 | 14 | $fNum2 = $fNum * 0.5; |
|
943 | 14 | $y = ($fNum2 * $fNum2); |
|
944 | 14 | $fRet = -log($fNum2) * self::BESSELI($fNum, 0) + |
|
945 | (-0.57721566 + $y * (0.42278420 + $y * (0.23069756 + $y * (0.3488590e-1 + $y * (0.262698e-2 + $y * |
||
946 | 14 | (0.10750e-3 + $y * 0.74e-5)))))); |
|
947 | View Code Duplication | } else { |
|
948 | 8 | $y = 2 / $fNum; |
|
949 | 8 | $fRet = exp(-$fNum) / sqrt($fNum) * |
|
950 | (1.25331414 + $y * (-0.7832358e-1 + $y * (0.2189568e-1 + $y * (-0.1062446e-1 + $y * |
||
951 | 8 | (0.587872e-2 + $y * (-0.251540e-2 + $y * 0.53208e-3)))))); |
|
952 | } |
||
953 | |||
954 | 22 | return $fRet; |
|
955 | } |
||
956 | |||
957 | 30 | private static function besselK1($fNum) |
|
958 | { |
||
959 | 30 | if ($fNum <= 2) { |
|
960 | 17 | $fNum2 = $fNum * 0.5; |
|
961 | 17 | $y = ($fNum2 * $fNum2); |
|
962 | 17 | $fRet = log($fNum2) * self::BESSELI($fNum, 1) + |
|
963 | (1 + $y * (0.15443144 + $y * (-0.67278579 + $y * (-0.18156897 + $y * (-0.1919402e-1 + $y * |
||
964 | 17 | (-0.110404e-2 + $y * (-0.4686e-4))))))) / $fNum; |
|
965 | View Code Duplication | } else { |
|
966 | 13 | $y = 2 / $fNum; |
|
967 | 13 | $fRet = exp(-$fNum) / sqrt($fNum) * |
|
968 | (1.25331414 + $y * (0.23498619 + $y * (-0.3655620e-1 + $y * (0.1504268e-1 + $y * (-0.780353e-2 + $y * |
||
969 | 13 | (0.325614e-2 + $y * (-0.68245e-3))))))); |
|
970 | } |
||
971 | |||
972 | 30 | return $fRet; |
|
973 | } |
||
974 | |||
975 | /** |
||
976 | * BESSELK. |
||
977 | * |
||
978 | * Returns the modified Bessel function Kn(x), which is equivalent to the Bessel functions evaluated |
||
979 | * for purely imaginary arguments. |
||
980 | * |
||
981 | * Excel Function: |
||
982 | * BESSELK(x,ord) |
||
983 | * |
||
984 | * @category Engineering Functions |
||
985 | * |
||
986 | * @param float $x The value at which to evaluate the function. |
||
987 | * If x is nonnumeric, BESSELK returns the #VALUE! error value. |
||
988 | * @param int $ord The order of the Bessel function. If n is not an integer, it is truncated. |
||
989 | * If $ord is nonnumeric, BESSELK returns the #VALUE! error value. |
||
990 | * If $ord < 0, BESSELK returns the #NUM! error value. |
||
991 | * |
||
992 | * @return float |
||
993 | */ |
||
994 | 38 | View Code Duplication | public static function BESSELK($x, $ord) |
995 | { |
||
996 | 38 | $x = ($x === null) ? 0.0 : Functions::flattenSingleValue($x); |
|
997 | 38 | $ord = ($ord === null) ? 0.0 : Functions::flattenSingleValue($ord); |
|
998 | |||
999 | 38 | if ((is_numeric($x)) && (is_numeric($ord))) { |
|
1000 | 36 | if (($ord < 0) || ($x == 0.0)) { |
|
1001 | 4 | return Functions::NAN(); |
|
1002 | } |
||
1003 | |||
1004 | 32 | switch (floor($ord)) { |
|
1005 | 32 | case 0: |
|
1006 | 2 | $fBk = self::besselK0($x); |
|
1007 | |||
1008 | 2 | break; |
|
1009 | 30 | case 1: |
|
1010 | 10 | $fBk = self::besselK1($x); |
|
1011 | |||
1012 | 10 | break; |
|
1013 | default: |
||
1014 | 20 | $fTox = 2 / $x; |
|
1015 | 20 | $fBkm = self::besselK0($x); |
|
1016 | 20 | $fBk = self::besselK1($x); |
|
1017 | 20 | for ($n = 1; $n < $ord; ++$n) { |
|
1018 | 20 | $fBkp = $fBkm + $n * $fTox * $fBk; |
|
1019 | 20 | $fBkm = $fBk; |
|
1020 | 20 | $fBk = $fBkp; |
|
1021 | } |
||
1022 | } |
||
1023 | |||
1024 | 32 | return (is_nan($fBk)) ? Functions::NAN() : $fBk; |
|
1025 | } |
||
1026 | |||
1027 | 2 | return Functions::VALUE(); |
|
1028 | } |
||
1029 | |||
1030 | 11 | private static function besselY0($fNum) |
|
1031 | { |
||
1032 | 11 | if ($fNum < 8.0) { |
|
1033 | 10 | $y = ($fNum * $fNum); |
|
1034 | 10 | $f1 = -2957821389.0 + $y * (7062834065.0 + $y * (-512359803.6 + $y * (10879881.29 + $y * (-86327.92757 + $y * 228.4622733)))); |
|
1035 | 10 | $f2 = 40076544269.0 + $y * (745249964.8 + $y * (7189466.438 + $y * (47447.26470 + $y * (226.1030244 + $y)))); |
|
1036 | 10 | $fRet = $f1 / $f2 + 0.636619772 * self::BESSELJ($fNum, 0) * log($fNum); |
|
1037 | } else { |
||
1038 | 1 | $z = 8.0 / $fNum; |
|
1039 | 1 | $y = ($z * $z); |
|
1040 | 1 | $xx = $fNum - 0.785398164; |
|
1041 | 1 | $f1 = 1 + $y * (-0.1098628627e-2 + $y * (0.2734510407e-4 + $y * (-0.2073370639e-5 + $y * 0.2093887211e-6))); |
|
1042 | 1 | $f2 = -0.1562499995e-1 + $y * (0.1430488765e-3 + $y * (-0.6911147651e-5 + $y * (0.7621095161e-6 + $y * (-0.934945152e-7)))); |
|
1043 | 1 | $fRet = sqrt(0.636619772 / $fNum) * (sin($xx) * $f1 + $z * cos($xx) * $f2); |
|
1044 | } |
||
1045 | |||
1046 | 11 | return $fRet; |
|
1047 | } |
||
1048 | |||
1049 | 16 | private static function besselY1($fNum) |
|
1050 | { |
||
1051 | 16 | if ($fNum < 8.0) { |
|
1052 | 16 | $y = ($fNum * $fNum); |
|
1053 | $f1 = $fNum * (-0.4900604943e13 + $y * (0.1275274390e13 + $y * (-0.5153438139e11 + $y * (0.7349264551e9 + $y * |
||
1054 | 16 | (-0.4237922726e7 + $y * 0.8511937935e4))))); |
|
1055 | $f2 = 0.2499580570e14 + $y * (0.4244419664e12 + $y * (0.3733650367e10 + $y * (0.2245904002e8 + $y * |
||
1056 | 16 | (0.1020426050e6 + $y * (0.3549632885e3 + $y))))); |
|
1057 | 16 | $fRet = $f1 / $f2 + 0.636619772 * (self::BESSELJ($fNum, 1) * log($fNum) - 1 / $fNum); |
|
1058 | } else { |
||
1059 | $fRet = sqrt(0.636619772 / $fNum) * sin($fNum - 2.356194491); |
||
1060 | } |
||
1061 | |||
1062 | 16 | return $fRet; |
|
1063 | } |
||
1064 | |||
1065 | /** |
||
1066 | * BESSELY. |
||
1067 | * |
||
1068 | * Returns the Bessel function, which is also called the Weber function or the Neumann function. |
||
1069 | * |
||
1070 | * Excel Function: |
||
1071 | * BESSELY(x,ord) |
||
1072 | * |
||
1073 | * @category Engineering Functions |
||
1074 | * |
||
1075 | * @param float $x The value at which to evaluate the function. |
||
1076 | * If x is nonnumeric, BESSELK returns the #VALUE! error value. |
||
1077 | * @param int $ord The order of the Bessel function. If n is not an integer, it is truncated. |
||
1078 | * If $ord is nonnumeric, BESSELK returns the #VALUE! error value. |
||
1079 | * If $ord < 0, BESSELK returns the #NUM! error value. |
||
1080 | * |
||
1081 | * @return float |
||
1082 | */ |
||
1083 | 23 | View Code Duplication | public static function BESSELY($x, $ord) |
1084 | { |
||
1085 | 23 | $x = ($x === null) ? 0.0 : Functions::flattenSingleValue($x); |
|
1086 | 23 | $ord = ($ord === null) ? 0.0 : Functions::flattenSingleValue($ord); |
|
1087 | |||
1088 | 23 | if ((is_numeric($x)) && (is_numeric($ord))) { |
|
1089 | 21 | if (($ord < 0) || ($x == 0.0)) { |
|
1090 | 3 | return Functions::NAN(); |
|
1091 | } |
||
1092 | |||
1093 | 18 | switch (floor($ord)) { |
|
1094 | 18 | case 0: |
|
1095 | 2 | $fBy = self::besselY0($x); |
|
1096 | |||
1097 | 2 | break; |
|
1098 | 16 | case 1: |
|
1099 | 7 | $fBy = self::besselY1($x); |
|
1100 | |||
1101 | 7 | break; |
|
1102 | default: |
||
1103 | 9 | $fTox = 2 / $x; |
|
1104 | 9 | $fBym = self::besselY0($x); |
|
1105 | 9 | $fBy = self::besselY1($x); |
|
1106 | 9 | for ($n = 1; $n < $ord; ++$n) { |
|
1107 | 9 | $fByp = $n * $fTox * $fBy - $fBym; |
|
1108 | 9 | $fBym = $fBy; |
|
1109 | 9 | $fBy = $fByp; |
|
1110 | } |
||
1111 | } |
||
1112 | |||
1113 | 18 | return (is_nan($fBy)) ? Functions::NAN() : $fBy; |
|
1114 | } |
||
1115 | |||
1116 | 2 | return Functions::VALUE(); |
|
1117 | } |
||
1118 | |||
1119 | /** |
||
1120 | * BINTODEC. |
||
1121 | * |
||
1122 | * Return a binary value as decimal. |
||
1123 | * |
||
1124 | * Excel Function: |
||
1125 | * BIN2DEC(x) |
||
1126 | * |
||
1127 | * @category Engineering Functions |
||
1128 | * |
||
1129 | * @param string $x The binary number (as a string) that you want to convert. The number |
||
1130 | * cannot contain more than 10 characters (10 bits). The most significant |
||
1131 | * bit of number is the sign bit. The remaining 9 bits are magnitude bits. |
||
1132 | * Negative numbers are represented using two's-complement notation. |
||
1133 | * If number is not a valid binary number, or if number contains more than |
||
1134 | * 10 characters (10 bits), BIN2DEC returns the #NUM! error value. |
||
1135 | * |
||
1136 | * @return string |
||
1137 | */ |
||
1138 | 10 | public static function BINTODEC($x) |
|
1139 | { |
||
1140 | 10 | $x = Functions::flattenSingleValue($x); |
|
1141 | |||
1142 | 10 | if (is_bool($x)) { |
|
1143 | 1 | if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { |
|
1144 | $x = (int) $x; |
||
1145 | } else { |
||
1146 | 1 | return Functions::VALUE(); |
|
1147 | } |
||
1148 | } |
||
1149 | 9 | if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) { |
|
1150 | $x = floor($x); |
||
1151 | } |
||
1152 | 9 | $x = (string) $x; |
|
1153 | 9 | if (strlen($x) > preg_match_all('/[01]/', $x, $out)) { |
|
1154 | 1 | return Functions::NAN(); |
|
1155 | } |
||
1156 | 8 | if (strlen($x) > 10) { |
|
1157 | 1 | return Functions::NAN(); |
|
1158 | 7 | } elseif (strlen($x) == 10) { |
|
1159 | // Two's Complement |
||
1160 | 2 | $x = substr($x, -9); |
|
1161 | |||
1162 | 2 | return '-' . (512 - bindec($x)); |
|
1 ignored issue
–
show
|
|||
1163 | } |
||
1164 | |||
1165 | 5 | return bindec($x); |
|
1166 | } |
||
1167 | |||
1168 | /** |
||
1169 | * BINTOHEX. |
||
1170 | * |
||
1171 | * Return a binary value as hex. |
||
1172 | * |
||
1173 | * Excel Function: |
||
1174 | * BIN2HEX(x[,places]) |
||
1175 | * |
||
1176 | * @category Engineering Functions |
||
1177 | * |
||
1178 | * @param string $x The binary number (as a string) that you want to convert. The number |
||
1179 | * cannot contain more than 10 characters (10 bits). The most significant |
||
1180 | * bit of number is the sign bit. The remaining 9 bits are magnitude bits. |
||
1181 | * Negative numbers are represented using two's-complement notation. |
||
1182 | * If number is not a valid binary number, or if number contains more than |
||
1183 | * 10 characters (10 bits), BIN2HEX returns the #NUM! error value. |
||
1184 | * @param int $places The number of characters to use. If places is omitted, BIN2HEX uses the |
||
1185 | * minimum number of characters necessary. Places is useful for padding the |
||
1186 | * return value with leading 0s (zeros). |
||
1187 | * If places is not an integer, it is truncated. |
||
1188 | * If places is nonnumeric, BIN2HEX returns the #VALUE! error value. |
||
1189 | * If places is negative, BIN2HEX returns the #NUM! error value. |
||
1190 | * |
||
1191 | * @return string |
||
1192 | */ |
||
1193 | 14 | View Code Duplication | public static function BINTOHEX($x, $places = null) |
1194 | { |
||
1195 | 14 | $x = Functions::flattenSingleValue($x); |
|
1196 | 14 | $places = Functions::flattenSingleValue($places); |
|
1197 | |||
1198 | // Argument X |
||
1199 | 14 | if (is_bool($x)) { |
|
1200 | 1 | if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { |
|
1201 | $x = (int) $x; |
||
1202 | } else { |
||
1203 | 1 | return Functions::VALUE(); |
|
1204 | } |
||
1205 | } |
||
1206 | 13 | if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) { |
|
1207 | $x = floor($x); |
||
1208 | } |
||
1209 | 13 | $x = (string) $x; |
|
1210 | 13 | if (strlen($x) > preg_match_all('/[01]/', $x, $out)) { |
|
1211 | 1 | return Functions::NAN(); |
|
1212 | } |
||
1213 | 12 | if (strlen($x) > 10) { |
|
1214 | 1 | return Functions::NAN(); |
|
1215 | 11 | } elseif (strlen($x) == 10) { |
|
1216 | // Two's Complement |
||
1217 | 2 | return str_repeat('F', 8) . substr(strtoupper(dechex(bindec(substr($x, -9)))), -2); |
|
3 ignored issues
–
show
|
|||
1218 | } |
||
1219 | 9 | $hexVal = (string) strtoupper(dechex(bindec($x))); |
|
1220 | |||
1221 | 9 | return self::nbrConversionFormat($hexVal, $places); |
|
1222 | } |
||
1223 | |||
1224 | /** |
||
1225 | * BINTOOCT. |
||
1226 | * |
||
1227 | * Return a binary value as octal. |
||
1228 | * |
||
1229 | * Excel Function: |
||
1230 | * BIN2OCT(x[,places]) |
||
1231 | * |
||
1232 | * @category Engineering Functions |
||
1233 | * |
||
1234 | * @param string $x The binary number (as a string) that you want to convert. The number |
||
1235 | * cannot contain more than 10 characters (10 bits). The most significant |
||
1236 | * bit of number is the sign bit. The remaining 9 bits are magnitude bits. |
||
1237 | * Negative numbers are represented using two's-complement notation. |
||
1238 | * If number is not a valid binary number, or if number contains more than |
||
1239 | * 10 characters (10 bits), BIN2OCT returns the #NUM! error value. |
||
1240 | * @param int $places The number of characters to use. If places is omitted, BIN2OCT uses the |
||
1241 | * minimum number of characters necessary. Places is useful for padding the |
||
1242 | * return value with leading 0s (zeros). |
||
1243 | * If places is not an integer, it is truncated. |
||
1244 | * If places is nonnumeric, BIN2OCT returns the #VALUE! error value. |
||
1245 | * If places is negative, BIN2OCT returns the #NUM! error value. |
||
1246 | * |
||
1247 | * @return string |
||
1248 | */ |
||
1249 | 15 | View Code Duplication | public static function BINTOOCT($x, $places = null) |
1250 | { |
||
1251 | 15 | $x = Functions::flattenSingleValue($x); |
|
1252 | 15 | $places = Functions::flattenSingleValue($places); |
|
1253 | |||
1254 | 15 | if (is_bool($x)) { |
|
1255 | 1 | if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { |
|
1256 | $x = (int) $x; |
||
1257 | } else { |
||
1258 | 1 | return Functions::VALUE(); |
|
1259 | } |
||
1260 | } |
||
1261 | 14 | if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) { |
|
1262 | $x = floor($x); |
||
1263 | } |
||
1264 | 14 | $x = (string) $x; |
|
1265 | 14 | if (strlen($x) > preg_match_all('/[01]/', $x, $out)) { |
|
1266 | 1 | return Functions::NAN(); |
|
1267 | } |
||
1268 | 13 | if (strlen($x) > 10) { |
|
1269 | 1 | return Functions::NAN(); |
|
1270 | 12 | } elseif (strlen($x) == 10) { |
|
1271 | // Two's Complement |
||
1272 | 2 | return str_repeat('7', 7) . substr(strtoupper(decoct(bindec(substr($x, -9)))), -3); |
|
3 ignored issues
–
show
|
|||
1273 | } |
||
1274 | 10 | $octVal = (string) decoct(bindec($x)); |
|
1275 | |||
1276 | 10 | return self::nbrConversionFormat($octVal, $places); |
|
1277 | } |
||
1278 | |||
1279 | /** |
||
1280 | * DECTOBIN. |
||
1281 | * |
||
1282 | * Return a decimal value as binary. |
||
1283 | * |
||
1284 | * Excel Function: |
||
1285 | * DEC2BIN(x[,places]) |
||
1286 | * |
||
1287 | * @category Engineering Functions |
||
1288 | * |
||
1289 | * @param string $x The decimal integer you want to convert. If number is negative, |
||
1290 | * valid place values are ignored and DEC2BIN returns a 10-character |
||
1291 | * (10-bit) binary number in which the most significant bit is the sign |
||
1292 | * bit. The remaining 9 bits are magnitude bits. Negative numbers are |
||
1293 | * represented using two's-complement notation. |
||
1294 | * If number < -512 or if number > 511, DEC2BIN returns the #NUM! error |
||
1295 | * value. |
||
1296 | * If number is nonnumeric, DEC2BIN returns the #VALUE! error value. |
||
1297 | * If DEC2BIN requires more than places characters, it returns the #NUM! |
||
1298 | * error value. |
||
1299 | * @param int $places The number of characters to use. If places is omitted, DEC2BIN uses |
||
1300 | * the minimum number of characters necessary. Places is useful for |
||
1301 | * padding the return value with leading 0s (zeros). |
||
1302 | * If places is not an integer, it is truncated. |
||
1303 | * If places is nonnumeric, DEC2BIN returns the #VALUE! error value. |
||
1304 | * If places is zero or negative, DEC2BIN returns the #NUM! error value. |
||
1305 | * |
||
1306 | * @return string |
||
1307 | */ |
||
1308 | 41 | public static function DECTOBIN($x, $places = null) |
|
1309 | { |
||
1310 | 41 | $x = Functions::flattenSingleValue($x); |
|
1311 | 41 | $places = Functions::flattenSingleValue($places); |
|
1312 | |||
1313 | 41 | if (is_bool($x)) { |
|
1314 | 1 | if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { |
|
1315 | $x = (int) $x; |
||
1316 | } else { |
||
1317 | 1 | return Functions::VALUE(); |
|
1318 | } |
||
1319 | } |
||
1320 | 40 | $x = (string) $x; |
|
1321 | 40 | if (strlen($x) > preg_match_all('/[-0123456789.]/', $x, $out)) { |
|
1322 | 1 | return Functions::VALUE(); |
|
1323 | } |
||
1324 | |||
1325 | 39 | $x = (string) floor($x); |
|
1326 | 39 | if ($x < -512 || $x > 511) { |
|
1327 | 13 | return Functions::NAN(); |
|
1328 | } |
||
1329 | |||
1330 | 26 | $r = decbin($x); |
|
1331 | // Two's Complement |
||
1332 | 26 | $r = substr($r, -10); |
|
1333 | 26 | if (strlen($r) >= 11) { |
|
1 ignored issue
–
show
|
|||
1334 | return Functions::NAN(); |
||
1335 | } |
||
1336 | |||
1337 | 26 | return self::nbrConversionFormat($r, $places); |
|
1 ignored issue
–
show
|
|||
1338 | } |
||
1339 | |||
1340 | /** |
||
1341 | * DECTOHEX. |
||
1342 | * |
||
1343 | * Return a decimal value as hex. |
||
1344 | * |
||
1345 | * Excel Function: |
||
1346 | * DEC2HEX(x[,places]) |
||
1347 | * |
||
1348 | * @category Engineering Functions |
||
1349 | * |
||
1350 | * @param string $x The decimal integer you want to convert. If number is negative, |
||
1351 | * places is ignored and DEC2HEX returns a 10-character (40-bit) |
||
1352 | * hexadecimal number in which the most significant bit is the sign |
||
1353 | * bit. The remaining 39 bits are magnitude bits. Negative numbers |
||
1354 | * are represented using two's-complement notation. |
||
1355 | * If number < -549,755,813,888 or if number > 549,755,813,887, |
||
1356 | * DEC2HEX returns the #NUM! error value. |
||
1357 | * If number is nonnumeric, DEC2HEX returns the #VALUE! error value. |
||
1358 | * If DEC2HEX requires more than places characters, it returns the |
||
1359 | * #NUM! error value. |
||
1360 | * @param int $places The number of characters to use. If places is omitted, DEC2HEX uses |
||
1361 | * the minimum number of characters necessary. Places is useful for |
||
1362 | * padding the return value with leading 0s (zeros). |
||
1363 | * If places is not an integer, it is truncated. |
||
1364 | * If places is nonnumeric, DEC2HEX returns the #VALUE! error value. |
||
1365 | * If places is zero or negative, DEC2HEX returns the #NUM! error value. |
||
1366 | * |
||
1367 | * @return string |
||
1368 | */ |
||
1369 | 15 | View Code Duplication | public static function DECTOHEX($x, $places = null) |
1370 | { |
||
1371 | 15 | $x = Functions::flattenSingleValue($x); |
|
1372 | 15 | $places = Functions::flattenSingleValue($places); |
|
1373 | |||
1374 | 15 | if (is_bool($x)) { |
|
1375 | 1 | if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { |
|
1376 | $x = (int) $x; |
||
1377 | } else { |
||
1378 | 1 | return Functions::VALUE(); |
|
1379 | } |
||
1380 | } |
||
1381 | 14 | $x = (string) $x; |
|
1382 | 14 | if (strlen($x) > preg_match_all('/[-0123456789.]/', $x, $out)) { |
|
1383 | 1 | return Functions::VALUE(); |
|
1384 | } |
||
1385 | 13 | $x = (string) floor($x); |
|
1386 | 13 | $r = strtoupper(dechex($x)); |
|
1387 | 13 | if (strlen($r) == 8) { |
|
1388 | // Two's Complement |
||
1389 | $r = 'FF' . $r; |
||
1390 | } |
||
1391 | |||
1392 | 13 | return self::nbrConversionFormat($r, $places); |
|
1393 | } |
||
1394 | |||
1395 | /** |
||
1396 | * DECTOOCT. |
||
1397 | * |
||
1398 | * Return an decimal value as octal. |
||
1399 | * |
||
1400 | * Excel Function: |
||
1401 | * DEC2OCT(x[,places]) |
||
1402 | * |
||
1403 | * @category Engineering Functions |
||
1404 | * |
||
1405 | * @param string $x The decimal integer you want to convert. If number is negative, |
||
1406 | * places is ignored and DEC2OCT returns a 10-character (30-bit) |
||
1407 | * octal number in which the most significant bit is the sign bit. |
||
1408 | * The remaining 29 bits are magnitude bits. Negative numbers are |
||
1409 | * represented using two's-complement notation. |
||
1410 | * If number < -536,870,912 or if number > 536,870,911, DEC2OCT |
||
1411 | * returns the #NUM! error value. |
||
1412 | * If number is nonnumeric, DEC2OCT returns the #VALUE! error value. |
||
1413 | * If DEC2OCT requires more than places characters, it returns the |
||
1414 | * #NUM! error value. |
||
1415 | * @param int $places The number of characters to use. If places is omitted, DEC2OCT uses |
||
1416 | * the minimum number of characters necessary. Places is useful for |
||
1417 | * padding the return value with leading 0s (zeros). |
||
1418 | * If places is not an integer, it is truncated. |
||
1419 | * If places is nonnumeric, DEC2OCT returns the #VALUE! error value. |
||
1420 | * If places is zero or negative, DEC2OCT returns the #NUM! error value. |
||
1421 | * |
||
1422 | * @return string |
||
1423 | */ |
||
1424 | 20 | View Code Duplication | public static function DECTOOCT($x, $places = null) |
1425 | { |
||
1426 | 20 | $xorig = $x; |
|
1427 | 20 | $x = Functions::flattenSingleValue($x); |
|
1428 | 20 | $places = Functions::flattenSingleValue($places); |
|
1429 | |||
1430 | 20 | if (is_bool($x)) { |
|
1431 | 1 | if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { |
|
1432 | $x = (int) $x; |
||
1433 | } else { |
||
1434 | 1 | return Functions::VALUE(); |
|
1435 | } |
||
1436 | } |
||
1437 | 19 | $x = (string) $x; |
|
1438 | 19 | if (strlen($x) > preg_match_all('/[-0123456789.]/', $x, $out)) { |
|
1439 | 1 | return Functions::VALUE(); |
|
1440 | } |
||
1441 | 18 | $x = (string) floor($x); |
|
1442 | 18 | $r = decoct($x); |
|
1443 | 18 | if (strlen($r) == 11) { |
|
1444 | // Two's Complement |
||
1445 | $r = substr($r, -10); |
||
1446 | } |
||
1447 | |||
1448 | 18 | return self::nbrConversionFormat($r, $places); |
|
1 ignored issue
–
show
|
|||
1449 | } |
||
1450 | |||
1451 | /** |
||
1452 | * HEXTOBIN. |
||
1453 | * |
||
1454 | * Return a hex value as binary. |
||
1455 | * |
||
1456 | * Excel Function: |
||
1457 | * HEX2BIN(x[,places]) |
||
1458 | * |
||
1459 | * @category Engineering Functions |
||
1460 | * |
||
1461 | * @param string $x the hexadecimal number you want to convert. |
||
1462 | * Number cannot contain more than 10 characters. |
||
1463 | * The most significant bit of number is the sign bit (40th bit from the right). |
||
1464 | * The remaining 9 bits are magnitude bits. |
||
1465 | * Negative numbers are represented using two's-complement notation. |
||
1466 | * If number is negative, HEX2BIN ignores places and returns a 10-character binary number. |
||
1467 | * If number is negative, it cannot be less than FFFFFFFE00, |
||
1468 | * and if number is positive, it cannot be greater than 1FF. |
||
1469 | * If number is not a valid hexadecimal number, HEX2BIN returns the #NUM! error value. |
||
1470 | * If HEX2BIN requires more than places characters, it returns the #NUM! error value. |
||
1471 | * @param int $places The number of characters to use. If places is omitted, |
||
1472 | * HEX2BIN uses the minimum number of characters necessary. Places |
||
1473 | * is useful for padding the return value with leading 0s (zeros). |
||
1474 | * If places is not an integer, it is truncated. |
||
1475 | * If places is nonnumeric, HEX2BIN returns the #VALUE! error value. |
||
1476 | * If places is negative, HEX2BIN returns the #NUM! error value. |
||
1477 | * |
||
1478 | * @return string |
||
1479 | */ |
||
1480 | 16 | View Code Duplication | public static function HEXTOBIN($x, $places = null) |
1481 | { |
||
1482 | 16 | $x = Functions::flattenSingleValue($x); |
|
1483 | 16 | $places = Functions::flattenSingleValue($places); |
|
1484 | |||
1485 | 16 | if (is_bool($x)) { |
|
1486 | 1 | return Functions::VALUE(); |
|
1487 | } |
||
1488 | 15 | $x = (string) $x; |
|
1489 | 15 | if (strlen($x) > preg_match_all('/[0123456789ABCDEF]/', strtoupper($x), $out)) { |
|
1490 | 2 | return Functions::NAN(); |
|
1491 | } |
||
1492 | |||
1493 | 13 | return self::DECTOBIN(self::HEXTODEC($x), $places); |
|
1494 | } |
||
1495 | |||
1496 | /** |
||
1497 | * HEXTODEC. |
||
1498 | * |
||
1499 | * Return a hex value as decimal. |
||
1500 | * |
||
1501 | * Excel Function: |
||
1502 | * HEX2DEC(x) |
||
1503 | * |
||
1504 | * @category Engineering Functions |
||
1505 | * |
||
1506 | * @param string $x The hexadecimal number you want to convert. This number cannot |
||
1507 | * contain more than 10 characters (40 bits). The most significant |
||
1508 | * bit of number is the sign bit. The remaining 39 bits are magnitude |
||
1509 | * bits. Negative numbers are represented using two's-complement |
||
1510 | * notation. |
||
1511 | * If number is not a valid hexadecimal number, HEX2DEC returns the |
||
1512 | * #NUM! error value. |
||
1513 | * |
||
1514 | * @return string |
||
1515 | */ |
||
1516 | 37 | public static function HEXTODEC($x) |
|
1517 | { |
||
1518 | 37 | $x = Functions::flattenSingleValue($x); |
|
1519 | |||
1520 | 37 | if (is_bool($x)) { |
|
1521 | 1 | return Functions::VALUE(); |
|
1522 | } |
||
1523 | 36 | $x = (string) $x; |
|
1524 | 36 | if (strlen($x) > preg_match_all('/[0123456789ABCDEF]/', strtoupper($x), $out)) { |
|
1525 | 3 | return Functions::NAN(); |
|
1526 | } |
||
1527 | |||
1528 | 33 | if (strlen($x) > 10) { |
|
1529 | 1 | return Functions::NAN(); |
|
1530 | } |
||
1531 | |||
1532 | 32 | $binX = ''; |
|
1533 | 32 | View Code Duplication | foreach (str_split($x) as $char) { |
1534 | 32 | $binX .= str_pad(base_convert($char, 16, 2), 4, '0', STR_PAD_LEFT); |
|
1535 | } |
||
1536 | 32 | View Code Duplication | if (strlen($binX) == 40 && $binX[0] == '1') { |
1537 | 5 | for ($i = 0; $i < 40; ++$i) { |
|
1538 | 5 | $binX[$i] = ($binX[$i] == '1' ? '0' : '1'); |
|
1539 | } |
||
1540 | |||
1541 | 5 | return (bindec($binX) + 1) * -1; |
|
1542 | } |
||
1543 | |||
1544 | 27 | return bindec($binX); |
|
1545 | } |
||
1546 | |||
1547 | /** |
||
1548 | * HEXTOOCT. |
||
1549 | * |
||
1550 | * Return a hex value as octal. |
||
1551 | * |
||
1552 | * Excel Function: |
||
1553 | * HEX2OCT(x[,places]) |
||
1554 | * |
||
1555 | * @category Engineering Functions |
||
1556 | * |
||
1557 | * @param string $x The hexadecimal number you want to convert. Number cannot |
||
1558 | * contain more than 10 characters. The most significant bit of |
||
1559 | * number is the sign bit. The remaining 39 bits are magnitude |
||
1560 | * bits. Negative numbers are represented using two's-complement |
||
1561 | * notation. |
||
1562 | * If number is negative, HEX2OCT ignores places and returns a |
||
1563 | * 10-character octal number. |
||
1564 | * If number is negative, it cannot be less than FFE0000000, and |
||
1565 | * if number is positive, it cannot be greater than 1FFFFFFF. |
||
1566 | * If number is not a valid hexadecimal number, HEX2OCT returns |
||
1567 | * the #NUM! error value. |
||
1568 | * If HEX2OCT requires more than places characters, it returns |
||
1569 | * the #NUM! error value. |
||
1570 | * @param int $places The number of characters to use. If places is omitted, HEX2OCT |
||
1571 | * uses the minimum number of characters necessary. Places is |
||
1572 | * useful for padding the return value with leading 0s (zeros). |
||
1573 | * If places is not an integer, it is truncated. |
||
1574 | * If places is nonnumeric, HEX2OCT returns the #VALUE! error |
||
1575 | * value. |
||
1576 | * If places is negative, HEX2OCT returns the #NUM! error value. |
||
1577 | * |
||
1578 | * @return string |
||
1579 | */ |
||
1580 | 13 | public static function HEXTOOCT($x, $places = null) |
|
1581 | { |
||
1582 | 13 | $x = Functions::flattenSingleValue($x); |
|
1583 | 13 | $places = Functions::flattenSingleValue($places); |
|
1584 | |||
1585 | 13 | if (is_bool($x)) { |
|
1586 | 1 | return Functions::VALUE(); |
|
1587 | } |
||
1588 | 12 | $x = (string) $x; |
|
1589 | 12 | if (strlen($x) > preg_match_all('/[0123456789ABCDEF]/', strtoupper($x), $out)) { |
|
1590 | 3 | return Functions::NAN(); |
|
1591 | } |
||
1592 | |||
1593 | 9 | $decimal = self::HEXTODEC($x); |
|
1594 | 9 | if ($decimal < -536870912 || $decimal > 536870911) { |
|
1595 | 1 | return Functions::NAN(); |
|
1596 | } |
||
1597 | |||
1598 | 8 | return self::DECTOOCT($decimal, $places); |
|
1599 | } |
||
1600 | |||
1601 | /** |
||
1602 | * OCTTOBIN. |
||
1603 | * |
||
1604 | * Return an octal value as binary. |
||
1605 | * |
||
1606 | * Excel Function: |
||
1607 | * OCT2BIN(x[,places]) |
||
1608 | * |
||
1609 | * @category Engineering Functions |
||
1610 | * |
||
1611 | * @param string $x The octal number you want to convert. Number may not |
||
1612 | * contain more than 10 characters. The most significant |
||
1613 | * bit of number is the sign bit. The remaining 29 bits |
||
1614 | * are magnitude bits. Negative numbers are represented |
||
1615 | * using two's-complement notation. |
||
1616 | * If number is negative, OCT2BIN ignores places and returns |
||
1617 | * a 10-character binary number. |
||
1618 | * If number is negative, it cannot be less than 7777777000, |
||
1619 | * and if number is positive, it cannot be greater than 777. |
||
1620 | * If number is not a valid octal number, OCT2BIN returns |
||
1621 | * the #NUM! error value. |
||
1622 | * If OCT2BIN requires more than places characters, it |
||
1623 | * returns the #NUM! error value. |
||
1624 | * @param int $places The number of characters to use. If places is omitted, |
||
1625 | * OCT2BIN uses the minimum number of characters necessary. |
||
1626 | * Places is useful for padding the return value with |
||
1627 | * leading 0s (zeros). |
||
1628 | * If places is not an integer, it is truncated. |
||
1629 | * If places is nonnumeric, OCT2BIN returns the #VALUE! |
||
1630 | * error value. |
||
1631 | * If places is negative, OCT2BIN returns the #NUM! error |
||
1632 | * value. |
||
1633 | * |
||
1634 | * @return string |
||
1635 | */ |
||
1636 | 13 | View Code Duplication | public static function OCTTOBIN($x, $places = null) |
1637 | { |
||
1638 | 13 | $x = Functions::flattenSingleValue($x); |
|
1639 | 13 | $places = Functions::flattenSingleValue($places); |
|
1640 | |||
1641 | 13 | if (is_bool($x)) { |
|
1642 | 1 | return Functions::VALUE(); |
|
1643 | } |
||
1644 | 12 | $x = (string) $x; |
|
1645 | 12 | if (preg_match_all('/[01234567]/', $x, $out) != strlen($x)) { |
|
1646 | 2 | return Functions::NAN(); |
|
1647 | } |
||
1648 | |||
1649 | 10 | return self::DECTOBIN(self::OCTTODEC($x), $places); |
|
1650 | } |
||
1651 | |||
1652 | /** |
||
1653 | * OCTTODEC. |
||
1654 | * |
||
1655 | * Return an octal value as decimal. |
||
1656 | * |
||
1657 | * Excel Function: |
||
1658 | * OCT2DEC(x) |
||
1659 | * |
||
1660 | * @category Engineering Functions |
||
1661 | * |
||
1662 | * @param string $x The octal number you want to convert. Number may not contain |
||
1663 | * more than 10 octal characters (30 bits). The most significant |
||
1664 | * bit of number is the sign bit. The remaining 29 bits are |
||
1665 | * magnitude bits. Negative numbers are represented using |
||
1666 | * two's-complement notation. |
||
1667 | * If number is not a valid octal number, OCT2DEC returns the |
||
1668 | * #NUM! error value. |
||
1669 | * |
||
1670 | * @return string |
||
1671 | */ |
||
1672 | 25 | public static function OCTTODEC($x) |
|
1673 | { |
||
1674 | 25 | $x = Functions::flattenSingleValue($x); |
|
1675 | |||
1676 | 25 | if (is_bool($x)) { |
|
1677 | 1 | return Functions::VALUE(); |
|
1678 | } |
||
1679 | 24 | $x = (string) $x; |
|
1680 | 24 | if (preg_match_all('/[01234567]/', $x, $out) != strlen($x)) { |
|
1681 | 2 | return Functions::NAN(); |
|
1682 | } |
||
1683 | 22 | $binX = ''; |
|
1684 | 22 | View Code Duplication | foreach (str_split($x) as $char) { |
1685 | 22 | $binX .= str_pad(decbin((int) $char), 3, '0', STR_PAD_LEFT); |
|
1686 | } |
||
1687 | 22 | View Code Duplication | if (strlen($binX) == 30 && $binX[0] == '1') { |
1688 | 4 | for ($i = 0; $i < 30; ++$i) { |
|
1689 | 4 | $binX[$i] = ($binX[$i] == '1' ? '0' : '1'); |
|
1690 | } |
||
1691 | |||
1692 | 4 | return (bindec($binX) + 1) * -1; |
|
1693 | } |
||
1694 | |||
1695 | 18 | return bindec($binX); |
|
1696 | } |
||
1697 | |||
1698 | /** |
||
1699 | * OCTTOHEX. |
||
1700 | * |
||
1701 | * Return an octal value as hex. |
||
1702 | * |
||
1703 | * Excel Function: |
||
1704 | * OCT2HEX(x[,places]) |
||
1705 | * |
||
1706 | * @category Engineering Functions |
||
1707 | * |
||
1708 | * @param string $x The octal number you want to convert. Number may not contain |
||
1709 | * more than 10 octal characters (30 bits). The most significant |
||
1710 | * bit of number is the sign bit. The remaining 29 bits are |
||
1711 | * magnitude bits. Negative numbers are represented using |
||
1712 | * two's-complement notation. |
||
1713 | * If number is negative, OCT2HEX ignores places and returns a |
||
1714 | * 10-character hexadecimal number. |
||
1715 | * If number is not a valid octal number, OCT2HEX returns the |
||
1716 | * #NUM! error value. |
||
1717 | * If OCT2HEX requires more than places characters, it returns |
||
1718 | * the #NUM! error value. |
||
1719 | * @param int $places The number of characters to use. If places is omitted, OCT2HEX |
||
1720 | * uses the minimum number of characters necessary. Places is useful |
||
1721 | * for padding the return value with leading 0s (zeros). |
||
1722 | * If places is not an integer, it is truncated. |
||
1723 | * If places is nonnumeric, OCT2HEX returns the #VALUE! error value. |
||
1724 | * If places is negative, OCT2HEX returns the #NUM! error value. |
||
1725 | * |
||
1726 | * @return string |
||
1727 | */ |
||
1728 | 9 | View Code Duplication | public static function OCTTOHEX($x, $places = null) |
1729 | { |
||
1730 | 9 | $x = Functions::flattenSingleValue($x); |
|
1731 | 9 | $places = Functions::flattenSingleValue($places); |
|
1732 | |||
1733 | 9 | if (is_bool($x)) { |
|
1734 | 1 | return Functions::VALUE(); |
|
1735 | } |
||
1736 | 8 | $x = (string) $x; |
|
1737 | 8 | if (preg_match_all('/[01234567]/', $x, $out) != strlen($x)) { |
|
1738 | 2 | return Functions::NAN(); |
|
1739 | } |
||
1740 | 6 | $hexVal = strtoupper(dechex(self::OCTTODEC($x))); |
|
1741 | |||
1742 | 6 | return self::nbrConversionFormat($hexVal, $places); |
|
1743 | } |
||
1744 | |||
1745 | /** |
||
1746 | * COMPLEX. |
||
1747 | * |
||
1748 | * Converts real and imaginary coefficients into a complex number of the form x + yi or x + yj. |
||
1749 | * |
||
1750 | * Excel Function: |
||
1751 | * COMPLEX(realNumber,imaginary[,places]) |
||
1752 | * |
||
1753 | * @category Engineering Functions |
||
1754 | * |
||
1755 | * @param float $realNumber the real coefficient of the complex number |
||
1756 | * @param float $imaginary the imaginary coefficient of the complex number |
||
1757 | * @param string $suffix The suffix for the imaginary component of the complex number. |
||
1758 | * If omitted, the suffix is assumed to be "i". |
||
1759 | * |
||
1760 | * @return string |
||
1761 | */ |
||
1762 | 759 | public static function COMPLEX($realNumber = 0.0, $imaginary = 0.0, $suffix = 'i') |
|
1763 | { |
||
1764 | 759 | $realNumber = ($realNumber === null) ? 0.0 : Functions::flattenSingleValue($realNumber); |
|
1765 | 759 | $imaginary = ($imaginary === null) ? 0.0 : Functions::flattenSingleValue($imaginary); |
|
1766 | 759 | $suffix = ($suffix === null) ? 'i' : Functions::flattenSingleValue($suffix); |
|
1767 | |||
1768 | 759 | if (((is_numeric($realNumber)) && (is_numeric($imaginary))) && |
|
1769 | 759 | (($suffix == 'i') || ($suffix == 'j') || ($suffix == '')) |
|
1770 | ) { |
||
1771 | 758 | $realNumber = (float) $realNumber; |
|
1772 | 758 | $imaginary = (float) $imaginary; |
|
1773 | |||
1774 | 758 | if ($suffix == '') { |
|
1775 | $suffix = 'i'; |
||
1776 | } |
||
1777 | 758 | if ($realNumber == 0.0) { |
|
1778 | 65 | if ($imaginary == 0.0) { |
|
1779 | 6 | return (string) '0'; |
|
1780 | 59 | } elseif ($imaginary == 1.0) { |
|
1781 | 5 | return (string) $suffix; |
|
1782 | 54 | } elseif ($imaginary == -1.0) { |
|
1783 | 2 | return (string) '-' . $suffix; |
|
1784 | } |
||
1785 | |||
1786 | 52 | return (string) $imaginary . $suffix; |
|
1787 | 693 | } elseif ($imaginary == 0.0) { |
|
1788 | 54 | return (string) $realNumber; |
|
1789 | 639 | } elseif ($imaginary == 1.0) { |
|
1790 | 45 | return (string) $realNumber . '+' . $suffix; |
|
1791 | 594 | } elseif ($imaginary == -1.0) { |
|
1792 | 8 | return (string) $realNumber . '-' . $suffix; |
|
1793 | } |
||
1794 | 586 | if ($imaginary > 0) { |
|
1795 | 329 | $imaginary = (string) '+' . $imaginary; |
|
1796 | } |
||
1797 | |||
1798 | 586 | return (string) $realNumber . $imaginary . $suffix; |
|
1799 | } |
||
1800 | |||
1801 | 1 | return Functions::VALUE(); |
|
1802 | } |
||
1803 | |||
1804 | /** |
||
1805 | * IMAGINARY. |
||
1806 | * |
||
1807 | * Returns the imaginary coefficient of a complex number in x + yi or x + yj text format. |
||
1808 | * |
||
1809 | * Excel Function: |
||
1810 | * IMAGINARY(complexNumber) |
||
1811 | * |
||
1812 | * @category Engineering Functions |
||
1813 | * |
||
1814 | * @param string $complexNumber the complex number for which you want the imaginary |
||
1815 | * coefficient |
||
1816 | * |
||
1817 | * @return float |
||
1818 | */ |
||
1819 | 30 | public static function IMAGINARY($complexNumber) |
|
1820 | { |
||
1821 | 30 | $complexNumber = Functions::flattenSingleValue($complexNumber); |
|
1822 | |||
1823 | 30 | $parsedComplex = self::parseComplex($complexNumber); |
|
1824 | |||
1825 | 30 | return $parsedComplex['imaginary']; |
|
1826 | } |
||
1827 | |||
1828 | /** |
||
1829 | * IMREAL. |
||
1830 | * |
||
1831 | * Returns the real coefficient of a complex number in x + yi or x + yj text format. |
||
1832 | * |
||
1833 | * Excel Function: |
||
1834 | * IMREAL(complexNumber) |
||
1835 | * |
||
1836 | * @category Engineering Functions |
||
1837 | * |
||
1838 | * @param string $complexNumber the complex number for which you want the real coefficient |
||
1839 | * |
||
1840 | * @return float |
||
1841 | */ |
||
1842 | 30 | public static function IMREAL($complexNumber) |
|
1843 | { |
||
1844 | 30 | $complexNumber = Functions::flattenSingleValue($complexNumber); |
|
1845 | |||
1846 | 30 | $parsedComplex = self::parseComplex($complexNumber); |
|
1847 | |||
1848 | 30 | return $parsedComplex['real']; |
|
1849 | } |
||
1850 | |||
1851 | /** |
||
1852 | * IMABS. |
||
1853 | * |
||
1854 | * Returns the absolute value (modulus) of a complex number in x + yi or x + yj text format. |
||
1855 | * |
||
1856 | * Excel Function: |
||
1857 | * IMABS(complexNumber) |
||
1858 | * |
||
1859 | * @param string $complexNumber the complex number for which you want the absolute value |
||
1860 | * |
||
1861 | * @return float |
||
1862 | */ |
||
1863 | 27 | public static function IMABS($complexNumber) |
|
1864 | { |
||
1865 | 27 | $complexNumber = Functions::flattenSingleValue($complexNumber); |
|
1866 | |||
1867 | 27 | $parsedComplex = self::parseComplex($complexNumber); |
|
1868 | |||
1869 | 27 | return sqrt( |
|
1870 | 27 | ($parsedComplex['real'] * $parsedComplex['real']) + |
|
1871 | 27 | ($parsedComplex['imaginary'] * $parsedComplex['imaginary']) |
|
1872 | ); |
||
1873 | } |
||
1874 | |||
1875 | /** |
||
1876 | * IMARGUMENT. |
||
1877 | * |
||
1878 | * Returns the argument theta of a complex number, i.e. the angle in radians from the real |
||
1879 | * axis to the representation of the number in polar coordinates. |
||
1880 | * |
||
1881 | * Excel Function: |
||
1882 | * IMARGUMENT(complexNumber) |
||
1883 | * |
||
1884 | * @param string $complexNumber the complex number for which you want the argument theta |
||
1885 | * |
||
1886 | * @return float |
||
1887 | */ |
||
1888 | 128 | public static function IMARGUMENT($complexNumber) |
|
1889 | { |
||
1890 | 128 | $complexNumber = Functions::flattenSingleValue($complexNumber); |
|
1891 | 128 | $parsedComplex = self::parseComplex($complexNumber); |
|
1892 | 128 | if ($parsedComplex['real'] == 0.0) { |
|
1893 | 22 | if ($parsedComplex['imaginary'] == 0.0) { |
|
1894 | 2 | return Functions::DIV0(); |
|
1895 | 20 | } elseif ($parsedComplex['imaginary'] < 0.0) { |
|
1896 | 10 | return M_PI / -2; |
|
1897 | } |
||
1898 | |||
1899 | 10 | return M_PI / 2; |
|
1900 | 106 | } elseif ($parsedComplex['real'] > 0.0) { |
|
1901 | 52 | return atan($parsedComplex['imaginary'] / $parsedComplex['real']); |
|
1902 | 54 | } elseif ($parsedComplex['imaginary'] < 0.0) { |
|
1903 | 20 | return 0 - (M_PI - atan(abs($parsedComplex['imaginary']) / abs($parsedComplex['real']))); |
|
1904 | } |
||
1905 | |||
1906 | 34 | return M_PI - atan($parsedComplex['imaginary'] / abs($parsedComplex['real'])); |
|
1907 | } |
||
1908 | |||
1909 | /** |
||
1910 | * IMCONJUGATE. |
||
1911 | * |
||
1912 | * Returns the complex conjugate of a complex number in x + yi or x + yj text format. |
||
1913 | * |
||
1914 | * Excel Function: |
||
1915 | * IMCONJUGATE(complexNumber) |
||
1916 | * |
||
1917 | * @param string $complexNumber the complex number for which you want the conjugate |
||
1918 | * |
||
1919 | * @return string |
||
1920 | */ |
||
1921 | 47 | public static function IMCONJUGATE($complexNumber) |
|
1922 | { |
||
1923 | 47 | $complexNumber = Functions::flattenSingleValue($complexNumber); |
|
1924 | |||
1925 | 47 | $parsedComplex = self::parseComplex($complexNumber); |
|
1926 | |||
1927 | 47 | if ($parsedComplex['imaginary'] == 0.0) { |
|
1928 | 9 | return $parsedComplex['real']; |
|
1929 | } |
||
1930 | |||
1931 | 38 | return self::cleanComplex( |
|
1932 | 38 | self::COMPLEX( |
|
1933 | 38 | $parsedComplex['real'], |
|
1934 | 38 | 0 - $parsedComplex['imaginary'], |
|
1935 | 38 | $parsedComplex['suffix'] |
|
1936 | ) |
||
1937 | ); |
||
1938 | } |
||
1939 | |||
1940 | /** |
||
1941 | * IMCOS. |
||
1942 | * |
||
1943 | * Returns the cosine of a complex number in x + yi or x + yj text format. |
||
1944 | * |
||
1945 | * Excel Function: |
||
1946 | * IMCOS(complexNumber) |
||
1947 | * |
||
1948 | * @param string $complexNumber the complex number for which you want the cosine |
||
1949 | * |
||
1950 | * @return float|string |
||
1951 | */ |
||
1952 | 27 | View Code Duplication | public static function IMCOS($complexNumber) |
1953 | { |
||
1954 | 27 | $complexNumber = Functions::flattenSingleValue($complexNumber); |
|
1955 | |||
1956 | 27 | $parsedComplex = self::parseComplex($complexNumber); |
|
1957 | |||
1958 | 27 | if ($parsedComplex['imaginary'] == 0.0) { |
|
1959 | 6 | return cos($parsedComplex['real']); |
|
1960 | } |
||
1961 | |||
1962 | 21 | return self::IMCONJUGATE( |
|
1963 | 21 | self::COMPLEX( |
|
1964 | 21 | cos($parsedComplex['real']) * cosh($parsedComplex['imaginary']), |
|
1965 | 21 | sin($parsedComplex['real']) * sinh($parsedComplex['imaginary']), |
|
1966 | 21 | $parsedComplex['suffix'] |
|
1967 | ) |
||
1968 | ); |
||
1969 | } |
||
1970 | |||
1971 | /** |
||
1972 | * IMSIN. |
||
1973 | * |
||
1974 | * Returns the sine of a complex number in x + yi or x + yj text format. |
||
1975 | * |
||
1976 | * Excel Function: |
||
1977 | * IMSIN(complexNumber) |
||
1978 | * |
||
1979 | * @param string $complexNumber the complex number for which you want the sine |
||
1980 | * |
||
1981 | * @return float|string |
||
1982 | */ |
||
1983 | 27 | View Code Duplication | public static function IMSIN($complexNumber) |
1984 | { |
||
1985 | 27 | $complexNumber = Functions::flattenSingleValue($complexNumber); |
|
1986 | |||
1987 | 27 | $parsedComplex = self::parseComplex($complexNumber); |
|
1988 | |||
1989 | 27 | if ($parsedComplex['imaginary'] == 0.0) { |
|
1990 | 6 | return sin($parsedComplex['real']); |
|
1991 | } |
||
1992 | |||
1993 | 21 | return self::COMPLEX( |
|
1994 | 21 | sin($parsedComplex['real']) * cosh($parsedComplex['imaginary']), |
|
1995 | 21 | cos($parsedComplex['real']) * sinh($parsedComplex['imaginary']), |
|
1996 | 21 | $parsedComplex['suffix'] |
|
1997 | ); |
||
1998 | } |
||
1999 | |||
2000 | /** |
||
2001 | * IMSQRT. |
||
2002 | * |
||
2003 | * Returns the square root of a complex number in x + yi or x + yj text format. |
||
2004 | * |
||
2005 | * Excel Function: |
||
2006 | * IMSQRT(complexNumber) |
||
2007 | * |
||
2008 | * @param string $complexNumber the complex number for which you want the square root |
||
2009 | * |
||
2010 | * @return string |
||
2011 | */ |
||
2012 | 28 | public static function IMSQRT($complexNumber) |
|
2013 | { |
||
2014 | 28 | $complexNumber = Functions::flattenSingleValue($complexNumber); |
|
2015 | |||
2016 | 28 | $parsedComplex = self::parseComplex($complexNumber); |
|
2017 | |||
2018 | 28 | $theta = self::IMARGUMENT($complexNumber); |
|
2019 | 28 | if ($theta === Functions::DIV0()) { |
|
2020 | 1 | return '0'; |
|
2021 | } |
||
2022 | |||
2023 | 27 | $d1 = cos($theta / 2); |
|
2024 | 27 | $d2 = sin($theta / 2); |
|
2025 | 27 | $r = sqrt(sqrt(($parsedComplex['real'] * $parsedComplex['real']) + ($parsedComplex['imaginary'] * $parsedComplex['imaginary']))); |
|
2026 | |||
2027 | 27 | if ($parsedComplex['suffix'] == '') { |
|
2028 | 5 | return self::COMPLEX($d1 * $r, $d2 * $r); |
|
2029 | } |
||
2030 | |||
2031 | 22 | return self::COMPLEX($d1 * $r, $d2 * $r, $parsedComplex['suffix']); |
|
2032 | } |
||
2033 | |||
2034 | /** |
||
2035 | * IMLN. |
||
2036 | * |
||
2037 | * Returns the natural logarithm of a complex number in x + yi or x + yj text format. |
||
2038 | * |
||
2039 | * Excel Function: |
||
2040 | * IMLN(complexNumber) |
||
2041 | * |
||
2042 | * @param string $complexNumber the complex number for which you want the natural logarithm |
||
2043 | * |
||
2044 | * @return string |
||
2045 | */ |
||
2046 | 75 | public static function IMLN($complexNumber) |
|
2047 | { |
||
2048 | 75 | $complexNumber = Functions::flattenSingleValue($complexNumber); |
|
2049 | |||
2050 | 75 | $parsedComplex = self::parseComplex($complexNumber); |
|
2051 | |||
2052 | 75 | if (($parsedComplex['real'] == 0.0) && ($parsedComplex['imaginary'] == 0.0)) { |
|
2053 | 1 | return Functions::NAN(); |
|
2054 | } |
||
2055 | |||
2056 | 74 | $logR = log(sqrt(($parsedComplex['real'] * $parsedComplex['real']) + ($parsedComplex['imaginary'] * $parsedComplex['imaginary']))); |
|
2057 | 74 | $t = self::IMARGUMENT($complexNumber); |
|
2058 | |||
2059 | 74 | if ($parsedComplex['suffix'] == '') { |
|
2060 | 8 | return self::COMPLEX($logR, $t); |
|
2061 | } |
||
2062 | |||
2063 | 66 | return self::COMPLEX($logR, $t, $parsedComplex['suffix']); |
|
2064 | } |
||
2065 | |||
2066 | /** |
||
2067 | * IMLOG10. |
||
2068 | * |
||
2069 | * Returns the common logarithm (base 10) of a complex number in x + yi or x + yj text format. |
||
2070 | * |
||
2071 | * Excel Function: |
||
2072 | * IMLOG10(complexNumber) |
||
2073 | * |
||
2074 | * @param string $complexNumber the complex number for which you want the common logarithm |
||
2075 | * |
||
2076 | * @return string |
||
2077 | */ |
||
2078 | 27 | View Code Duplication | public static function IMLOG10($complexNumber) |
2079 | { |
||
2080 | 27 | $complexNumber = Functions::flattenSingleValue($complexNumber); |
|
2081 | |||
2082 | 27 | $parsedComplex = self::parseComplex($complexNumber); |
|
2083 | |||
2084 | 27 | if (($parsedComplex['real'] == 0.0) && ($parsedComplex['imaginary'] == 0.0)) { |
|
2085 | 1 | return Functions::NAN(); |
|
2086 | 26 | } elseif (($parsedComplex['real'] > 0.0) && ($parsedComplex['imaginary'] == 0.0)) { |
|
2087 | 2 | return log10($parsedComplex['real']); |
|
2088 | } |
||
2089 | |||
2090 | 24 | return self::IMPRODUCT(log10(self::EULER), self::IMLN($complexNumber)); |
|
2091 | } |
||
2092 | |||
2093 | /** |
||
2094 | * IMLOG2. |
||
2095 | * |
||
2096 | * Returns the base-2 logarithm of a complex number in x + yi or x + yj text format. |
||
2097 | * |
||
2098 | * Excel Function: |
||
2099 | * IMLOG2(complexNumber) |
||
2100 | * |
||
2101 | * @param string $complexNumber the complex number for which you want the base-2 logarithm |
||
2102 | * |
||
2103 | * @return string |
||
2104 | */ |
||
2105 | 27 | View Code Duplication | public static function IMLOG2($complexNumber) |
2106 | { |
||
2107 | 27 | $complexNumber = Functions::flattenSingleValue($complexNumber); |
|
2108 | |||
2109 | 27 | $parsedComplex = self::parseComplex($complexNumber); |
|
2110 | |||
2111 | 27 | if (($parsedComplex['real'] == 0.0) && ($parsedComplex['imaginary'] == 0.0)) { |
|
2112 | 1 | return Functions::NAN(); |
|
2113 | 26 | } elseif (($parsedComplex['real'] > 0.0) && ($parsedComplex['imaginary'] == 0.0)) { |
|
2114 | 2 | return log($parsedComplex['real'], 2); |
|
2115 | } |
||
2116 | |||
2117 | 24 | return self::IMPRODUCT(log(self::EULER, 2), self::IMLN($complexNumber)); |
|
2118 | } |
||
2119 | |||
2120 | /** |
||
2121 | * IMEXP. |
||
2122 | * |
||
2123 | * Returns the exponential of a complex number in x + yi or x + yj text format. |
||
2124 | * |
||
2125 | * Excel Function: |
||
2126 | * IMEXP(complexNumber) |
||
2127 | * |
||
2128 | * @param string $complexNumber the complex number for which you want the exponential |
||
2129 | * |
||
2130 | * @return string |
||
2131 | */ |
||
2132 | 27 | public static function IMEXP($complexNumber) |
|
2133 | { |
||
2134 | 27 | $complexNumber = Functions::flattenSingleValue($complexNumber); |
|
2135 | |||
2136 | 27 | $parsedComplex = self::parseComplex($complexNumber); |
|
2137 | |||
2138 | 27 | if (($parsedComplex['real'] == 0.0) && ($parsedComplex['imaginary'] == 0.0)) { |
|
2139 | 1 | return '1'; |
|
2140 | } |
||
2141 | |||
2142 | 26 | $e = exp($parsedComplex['real']); |
|
2143 | 26 | $eX = $e * cos($parsedComplex['imaginary']); |
|
2144 | 26 | $eY = $e * sin($parsedComplex['imaginary']); |
|
2145 | |||
2146 | 26 | if ($parsedComplex['suffix'] == '') { |
|
2147 | 4 | return self::COMPLEX($eX, $eY); |
|
2148 | } |
||
2149 | |||
2150 | 22 | return self::COMPLEX($eX, $eY, $parsedComplex['suffix']); |
|
2151 | } |
||
2152 | |||
2153 | /** |
||
2154 | * IMPOWER. |
||
2155 | * |
||
2156 | * Returns a complex number in x + yi or x + yj text format raised to a power. |
||
2157 | * |
||
2158 | * Excel Function: |
||
2159 | * IMPOWER(complexNumber,realNumber) |
||
2160 | * |
||
2161 | * @param string $complexNumber the complex number you want to raise to a power |
||
2162 | * @param float $realNumber the power to which you want to raise the complex number |
||
2163 | * |
||
2164 | * @return string |
||
2165 | */ |
||
2166 | public static function IMPOWER($complexNumber, $realNumber) |
||
2167 | { |
||
2168 | $complexNumber = Functions::flattenSingleValue($complexNumber); |
||
2169 | $realNumber = Functions::flattenSingleValue($realNumber); |
||
2170 | |||
2171 | if (!is_numeric($realNumber)) { |
||
2172 | return Functions::VALUE(); |
||
2173 | } |
||
2174 | |||
2175 | $parsedComplex = self::parseComplex($complexNumber); |
||
2176 | |||
2177 | $r = sqrt(($parsedComplex['real'] * $parsedComplex['real']) + ($parsedComplex['imaginary'] * $parsedComplex['imaginary'])); |
||
2178 | $rPower = pow($r, $realNumber); |
||
2179 | $theta = self::IMARGUMENT($complexNumber) * $realNumber; |
||
2180 | if ($theta == 0) { |
||
2181 | return 1; |
||
2182 | } elseif ($parsedComplex['imaginary'] == 0.0) { |
||
2183 | return self::COMPLEX($rPower * cos($theta), $rPower * sin($theta), $parsedComplex['suffix']); |
||
2184 | } |
||
2185 | |||
2186 | return self::COMPLEX($rPower * cos($theta), $rPower * sin($theta), $parsedComplex['suffix']); |
||
2187 | } |
||
2188 | |||
2189 | /** |
||
2190 | * IMDIV. |
||
2191 | * |
||
2192 | * Returns the quotient of two complex numbers in x + yi or x + yj text format. |
||
2193 | * |
||
2194 | * Excel Function: |
||
2195 | * IMDIV(complexDividend,complexDivisor) |
||
2196 | * |
||
2197 | * @param string $complexDividend the complex numerator or dividend |
||
2198 | * @param string $complexDivisor the complex denominator or divisor |
||
2199 | * |
||
2200 | * @return string |
||
2201 | */ |
||
2202 | public static function IMDIV($complexDividend, $complexDivisor) |
||
2203 | { |
||
2204 | $complexDividend = Functions::flattenSingleValue($complexDividend); |
||
2205 | $complexDivisor = Functions::flattenSingleValue($complexDivisor); |
||
2206 | |||
2207 | $parsedComplexDividend = self::parseComplex($complexDividend); |
||
2208 | $parsedComplexDivisor = self::parseComplex($complexDivisor); |
||
2209 | |||
2210 | if (($parsedComplexDividend['suffix'] != '') && ($parsedComplexDivisor['suffix'] != '') && |
||
2211 | ($parsedComplexDividend['suffix'] != $parsedComplexDivisor['suffix']) |
||
2212 | ) { |
||
2213 | return Functions::NAN(); |
||
2214 | } |
||
2215 | if (($parsedComplexDividend['suffix'] != '') && ($parsedComplexDivisor['suffix'] == '')) { |
||
2216 | $parsedComplexDivisor['suffix'] = $parsedComplexDividend['suffix']; |
||
2217 | } |
||
2218 | |||
2219 | $d1 = ($parsedComplexDividend['real'] * $parsedComplexDivisor['real']) + ($parsedComplexDividend['imaginary'] * $parsedComplexDivisor['imaginary']); |
||
2220 | $d2 = ($parsedComplexDividend['imaginary'] * $parsedComplexDivisor['real']) - ($parsedComplexDividend['real'] * $parsedComplexDivisor['imaginary']); |
||
2221 | $d3 = ($parsedComplexDivisor['real'] * $parsedComplexDivisor['real']) + ($parsedComplexDivisor['imaginary'] * $parsedComplexDivisor['imaginary']); |
||
2222 | |||
2223 | $r = $d1 / $d3; |
||
2224 | $i = $d2 / $d3; |
||
2225 | |||
2226 | if ($i > 0.0) { |
||
2227 | return self::cleanComplex($r . '+' . $i . $parsedComplexDivisor['suffix']); |
||
2228 | } elseif ($i < 0.0) { |
||
2229 | return self::cleanComplex($r . $i . $parsedComplexDivisor['suffix']); |
||
2230 | } |
||
2231 | |||
2232 | return $r; |
||
2233 | } |
||
2234 | |||
2235 | /** |
||
2236 | * IMSUB. |
||
2237 | * |
||
2238 | * Returns the difference of two complex numbers in x + yi or x + yj text format. |
||
2239 | * |
||
2240 | * Excel Function: |
||
2241 | * IMSUB(complexNumber1,complexNumber2) |
||
2242 | * |
||
2243 | * @param string $complexNumber1 the complex number from which to subtract complexNumber2 |
||
2244 | * @param string $complexNumber2 the complex number to subtract from complexNumber1 |
||
2245 | * |
||
2246 | * @return string |
||
2247 | */ |
||
2248 | public static function IMSUB($complexNumber1, $complexNumber2) |
||
2249 | { |
||
2250 | $complexNumber1 = Functions::flattenSingleValue($complexNumber1); |
||
2251 | $complexNumber2 = Functions::flattenSingleValue($complexNumber2); |
||
2252 | |||
2253 | $parsedComplex1 = self::parseComplex($complexNumber1); |
||
2254 | $parsedComplex2 = self::parseComplex($complexNumber2); |
||
2255 | |||
2256 | if ((($parsedComplex1['suffix'] != '') && ($parsedComplex2['suffix'] != '')) && |
||
2257 | ($parsedComplex1['suffix'] != $parsedComplex2['suffix']) |
||
2258 | ) { |
||
2259 | return Functions::NAN(); |
||
2260 | } elseif (($parsedComplex1['suffix'] == '') && ($parsedComplex2['suffix'] != '')) { |
||
2261 | $parsedComplex1['suffix'] = $parsedComplex2['suffix']; |
||
2262 | } |
||
2263 | |||
2264 | $d1 = $parsedComplex1['real'] - $parsedComplex2['real']; |
||
2265 | $d2 = $parsedComplex1['imaginary'] - $parsedComplex2['imaginary']; |
||
2266 | |||
2267 | return self::COMPLEX($d1, $d2, $parsedComplex1['suffix']); |
||
2268 | } |
||
2269 | |||
2270 | /** |
||
2271 | * IMSUM. |
||
2272 | * |
||
2273 | * Returns the sum of two or more complex numbers in x + yi or x + yj text format. |
||
2274 | * |
||
2275 | * Excel Function: |
||
2276 | * IMSUM(complexNumber[,complexNumber[,...]]) |
||
2277 | * |
||
2278 | * @param string ...$complexNumbers Series of complex numbers to add |
||
2279 | * |
||
2280 | * @return string |
||
2281 | */ |
||
2282 | 10 | public static function IMSUM(...$complexNumbers) |
|
2283 | { |
||
2284 | // Return value |
||
2285 | 10 | $returnValue = self::parseComplex('0'); |
|
2286 | 10 | $activeSuffix = ''; |
|
2287 | |||
2288 | // Loop through the arguments |
||
2289 | 10 | $aArgs = Functions::flattenArray($complexNumbers); |
|
2290 | 10 | foreach ($aArgs as $arg) { |
|
2291 | 10 | $parsedComplex = self::parseComplex($arg); |
|
2292 | |||
2293 | 10 | View Code Duplication | if ($activeSuffix == '') { |
2294 | 10 | $activeSuffix = $parsedComplex['suffix']; |
|
2295 | 10 | } elseif (($parsedComplex['suffix'] != '') && ($activeSuffix != $parsedComplex['suffix'])) { |
|
2296 | 2 | return Functions::NAN(); |
|
2297 | } |
||
2298 | |||
2299 | 10 | $returnValue['real'] += $parsedComplex['real']; |
|
2300 | 10 | $returnValue['imaginary'] += $parsedComplex['imaginary']; |
|
2301 | } |
||
2302 | |||
2303 | 8 | if ($returnValue['imaginary'] == 0.0) { |
|
2304 | $activeSuffix = ''; |
||
2305 | } |
||
2306 | |||
2307 | 8 | return self::COMPLEX($returnValue['real'], $returnValue['imaginary'], $activeSuffix); |
|
2308 | } |
||
2309 | |||
2310 | /** |
||
2311 | * IMPRODUCT. |
||
2312 | * |
||
2313 | * Returns the product of two or more complex numbers in x + yi or x + yj text format. |
||
2314 | * |
||
2315 | * Excel Function: |
||
2316 | * IMPRODUCT(complexNumber[,complexNumber[,...]]) |
||
2317 | * |
||
2318 | * @param string ...$complexNumbers Series of complex numbers to multiply |
||
2319 | * |
||
2320 | * @return string |
||
2321 | */ |
||
2322 | 63 | public static function IMPRODUCT(...$complexNumbers) |
|
2323 | { |
||
2324 | // Return value |
||
2325 | 63 | $returnValue = self::parseComplex('1'); |
|
2326 | 63 | $activeSuffix = ''; |
|
2327 | |||
2328 | // Loop through the arguments |
||
2329 | 63 | $aArgs = Functions::flattenArray($complexNumbers); |
|
2330 | 63 | foreach ($aArgs as $arg) { |
|
2331 | 63 | $parsedComplex = self::parseComplex($arg); |
|
2332 | |||
2333 | 63 | $workValue = $returnValue; |
|
2334 | 63 | View Code Duplication | if (($parsedComplex['suffix'] != '') && ($activeSuffix == '')) { |
2335 | 63 | $activeSuffix = $parsedComplex['suffix']; |
|
2336 | 62 | } elseif (($parsedComplex['suffix'] != '') && ($activeSuffix != $parsedComplex['suffix'])) { |
|
2337 | 1 | return Functions::NAN(); |
|
2338 | } |
||
2339 | 63 | $returnValue['real'] = ($workValue['real'] * $parsedComplex['real']) - ($workValue['imaginary'] * $parsedComplex['imaginary']); |
|
2340 | 63 | $returnValue['imaginary'] = ($workValue['real'] * $parsedComplex['imaginary']) + ($workValue['imaginary'] * $parsedComplex['real']); |
|
2341 | } |
||
2342 | |||
2343 | 62 | if ($returnValue['imaginary'] == 0.0) { |
|
2344 | $activeSuffix = ''; |
||
2345 | } |
||
2346 | |||
2347 | 62 | return self::COMPLEX($returnValue['real'], $returnValue['imaginary'], $activeSuffix); |
|
2348 | } |
||
2349 | |||
2350 | /** |
||
2351 | * DELTA. |
||
2352 | * |
||
2353 | * Tests whether two values are equal. Returns 1 if number1 = number2; returns 0 otherwise. |
||
2354 | * Use this function to filter a set of values. For example, by summing several DELTA |
||
2355 | * functions you calculate the count of equal pairs. This function is also known as the |
||
2356 | * Kronecker Delta function. |
||
2357 | * |
||
2358 | * Excel Function: |
||
2359 | * DELTA(a[,b]) |
||
2360 | * |
||
2361 | * @param float $a the first number |
||
2362 | * @param float $b The second number. If omitted, b is assumed to be zero. |
||
2363 | * |
||
2364 | * @return int |
||
2365 | */ |
||
2366 | 25 | public static function DELTA($a, $b = 0) |
|
2372 | } |
||
2373 | |||
2374 | /** |
||
2375 | * GESTEP. |
||
2376 | * |
||
2377 | * Excel Function: |
||
2378 | * GESTEP(number[,step]) |
||
2379 | * |
||
2380 | * Returns 1 if number >= step; returns 0 (zero) otherwise |
||
2381 | * Use this function to filter a set of values. For example, by summing several GESTEP |
||
2382 | * functions you calculate the count of values that exceed a threshold. |
||
2383 | * |
||
2384 | * @param float $number the value to test against step |
||
2385 | * @param float $step The threshold value. |
||
2386 | * If you omit a value for step, GESTEP uses zero. |
||
2387 | * |
||
2388 | * @return int |
||
2389 | */ |
||
2390 | 81 | public static function GESTEP($number, $step = 0) |
|
2391 | { |
||
2392 | 81 | $number = Functions::flattenSingleValue($number); |
|
2393 | 81 | $step = Functions::flattenSingleValue($step); |
|
2394 | |||
2395 | 81 | return (int) ($number >= $step); |
|
2396 | } |
||
2397 | |||
2398 | // |
||
2399 | // Private method to calculate the erf value |
||
2400 | // |
||
2401 | private static $twoSqrtPi = 1.128379167095512574; |
||
2402 | |||
2403 | 148 | public static function erfVal($x) |
|
2404 | { |
||
2405 | 148 | if (abs($x) > 2.2) { |
|
2406 | 67 | return 1 - self::erfcVal($x); |
|
2407 | } |
||
2408 | 123 | $sum = $term = $x; |
|
2409 | 123 | $xsqr = ($x * $x); |
|
2410 | 123 | $j = 1; |
|
2411 | do { |
||
2412 | 123 | $term *= $xsqr / $j; |
|
2413 | 123 | $sum -= $term / (2 * $j + 1); |
|
2414 | 123 | ++$j; |
|
2415 | 123 | $term *= $xsqr / $j; |
|
2416 | 123 | $sum += $term / (2 * $j + 1); |
|
2417 | 123 | ++$j; |
|
2418 | 123 | if ($sum == 0.0) { |
|
2419 | 19 | break; |
|
2420 | } |
||
2421 | 112 | } while (abs($term / $sum) > Functions::PRECISION); |
|
2422 | |||
2423 | 123 | return self::$twoSqrtPi * $sum; |
|
2424 | } |
||
2425 | |||
2426 | /** |
||
2427 | * ERF. |
||
2428 | * |
||
2429 | * Returns the error function integrated between the lower and upper bound arguments. |
||
2430 | * |
||
2431 | * Note: In Excel 2007 or earlier, if you input a negative value for the upper or lower bound arguments, |
||
2432 | * the function would return a #NUM! error. However, in Excel 2010, the function algorithm was |
||
2433 | * improved, so that it can now calculate the function for both positive and negative ranges. |
||
2434 | * PhpSpreadsheet follows Excel 2010 behaviour, and accepts nagative arguments. |
||
2435 | * |
||
2436 | * Excel Function: |
||
2437 | * ERF(lower[,upper]) |
||
2438 | * |
||
2439 | * @param float $lower lower bound for integrating ERF |
||
2440 | * @param float $upper upper bound for integrating ERF. |
||
2441 | * If omitted, ERF integrates between zero and lower_limit |
||
2442 | * |
||
2443 | * @return float |
||
2444 | */ |
||
2445 | 123 | public static function ERF($lower, $upper = null) |
|
2446 | { |
||
2447 | 123 | $lower = Functions::flattenSingleValue($lower); |
|
2448 | 123 | $upper = Functions::flattenSingleValue($upper); |
|
2449 | |||
2450 | 123 | if (is_numeric($lower)) { |
|
2451 | 120 | if ($upper === null) { |
|
2452 | 37 | return self::erfVal($lower); |
|
2453 | } |
||
2454 | 83 | if (is_numeric($upper)) { |
|
2455 | 83 | return self::erfVal($upper) - self::erfVal($lower); |
|
2456 | } |
||
2457 | } |
||
2458 | |||
2459 | 3 | return Functions::VALUE(); |
|
2460 | } |
||
2461 | |||
2462 | // |
||
2463 | // Private method to calculate the erfc value |
||
2464 | // |
||
2465 | private static $oneSqrtPi = 0.564189583547756287; |
||
2466 | |||
2467 | 104 | private static function erfcVal($x) |
|
2468 | { |
||
2469 | 104 | if (abs($x) < 2.2) { |
|
2470 | 28 | return 1 - self::erfVal($x); |
|
2471 | } |
||
2472 | 76 | if ($x < 0) { |
|
2473 | 1 | return 2 - self::ERFC(-$x); |
|
2474 | } |
||
2475 | 76 | $a = $n = 1; |
|
2476 | 76 | $b = $c = $x; |
|
2477 | 76 | $d = ($x * $x) + 0.5; |
|
2478 | 76 | $q1 = $q2 = $b / $d; |
|
2479 | 76 | $t = 0; |
|
2480 | do { |
||
2481 | 76 | $t = $a * $n + $b * $x; |
|
2482 | 76 | $a = $b; |
|
2483 | 76 | $b = $t; |
|
2484 | 76 | $t = $c * $n + $d * $x; |
|
2485 | 76 | $c = $d; |
|
2486 | 76 | $d = $t; |
|
2487 | 76 | $n += 0.5; |
|
2488 | 76 | $q1 = $q2; |
|
2489 | 76 | $q2 = $b / $d; |
|
2490 | 76 | } while ((abs($q1 - $q2) / $q2) > Functions::PRECISION); |
|
2491 | |||
2492 | 76 | return self::$oneSqrtPi * exp(-$x * $x) * $q2; |
|
2493 | } |
||
2494 | |||
2495 | /** |
||
2496 | * ERFC. |
||
2497 | * |
||
2498 | * Returns the complementary ERF function integrated between x and infinity |
||
2499 | * |
||
2500 | * Note: In Excel 2007 or earlier, if you input a negative value for the lower bound argument, |
||
2501 | * the function would return a #NUM! error. However, in Excel 2010, the function algorithm was |
||
2502 | * improved, so that it can now calculate the function for both positive and negative x values. |
||
2503 | * PhpSpreadsheet follows Excel 2010 behaviour, and accepts nagative arguments. |
||
2504 | * |
||
2505 | * Excel Function: |
||
2506 | * ERFC(x) |
||
2507 | * |
||
2508 | * @param float $x The lower bound for integrating ERFC |
||
2509 | * |
||
2510 | * @return float |
||
2511 | */ |
||
2512 | 41 | public static function ERFC($x) |
|
2513 | { |
||
2514 | 41 | $x = Functions::flattenSingleValue($x); |
|
2515 | |||
2516 | 41 | if (is_numeric($x)) { |
|
2517 | 38 | return self::erfcVal($x); |
|
2518 | } |
||
2519 | |||
2520 | 3 | return Functions::VALUE(); |
|
2521 | } |
||
2522 | |||
2523 | /** |
||
2524 | * getConversionGroups |
||
2525 | * Returns a list of the different conversion groups for UOM conversions. |
||
2526 | * |
||
2527 | * @return array |
||
2528 | */ |
||
2529 | 1 | public static function getConversionGroups() |
|
2530 | { |
||
2531 | 1 | $conversionGroups = []; |
|
2532 | 1 | foreach (self::$conversionUnits as $conversionUnit) { |
|
2533 | 1 | $conversionGroups[] = $conversionUnit['Group']; |
|
2534 | } |
||
2535 | |||
2536 | 1 | return array_merge(array_unique($conversionGroups)); |
|
2537 | } |
||
2538 | |||
2539 | /** |
||
2540 | * getConversionGroupUnits |
||
2541 | * Returns an array of units of measure, for a specified conversion group, or for all groups. |
||
2542 | * |
||
2543 | * @param string $group The group whose units of measure you want to retrieve |
||
2544 | * |
||
2545 | * @return array |
||
2546 | */ |
||
2547 | 1 | public static function getConversionGroupUnits($group = null) |
|
2548 | { |
||
2549 | 1 | $conversionGroups = []; |
|
2550 | 1 | foreach (self::$conversionUnits as $conversionUnit => $conversionGroup) { |
|
2551 | 1 | if (($group === null) || ($conversionGroup['Group'] == $group)) { |
|
2552 | 1 | $conversionGroups[$conversionGroup['Group']][] = $conversionUnit; |
|
2553 | } |
||
2554 | } |
||
2555 | |||
2556 | 1 | return $conversionGroups; |
|
2557 | } |
||
2558 | |||
2559 | /** |
||
2560 | * getConversionGroupUnitDetails. |
||
2561 | * |
||
2562 | * @param string $group The group whose units of measure you want to retrieve |
||
2563 | * |
||
2564 | * @return array |
||
2565 | */ |
||
2566 | 1 | public static function getConversionGroupUnitDetails($group = null) |
|
2579 | } |
||
2580 | |||
2581 | /** |
||
2582 | * getConversionMultipliers |
||
2583 | * Returns an array of the Multiplier prefixes that can be used with Units of Measure in CONVERTUOM(). |
||
2584 | * |
||
2585 | * @return array of mixed |
||
2586 | */ |
||
2587 | 1 | public static function getConversionMultipliers() |
|
2588 | { |
||
2589 | 1 | return self::$conversionMultipliers; |
|
2590 | } |
||
2591 | |||
2592 | /** |
||
2593 | * CONVERTUOM. |
||
2594 | * |
||
2595 | * Converts a number from one measurement system to another. |
||
2596 | * For example, CONVERT can translate a table of distances in miles to a table of distances |
||
2597 | * in kilometers. |
||
2598 | * |
||
2599 | * Excel Function: |
||
2600 | * CONVERT(value,fromUOM,toUOM) |
||
2601 | * |
||
2602 | * @param float $value the value in fromUOM to convert |
||
2603 | * @param string $fromUOM the units for value |
||
2604 | * @param string $toUOM the units for the result |
||
2605 | * |
||
2606 | * @return float |
||
2607 | */ |
||
2608 | 24 | public static function CONVERTUOM($value, $fromUOM, $toUOM) |
|
2609 | { |
||
2610 | 24 | $value = Functions::flattenSingleValue($value); |
|
2611 | 24 | $fromUOM = Functions::flattenSingleValue($fromUOM); |
|
2696 | } |
||
2697 | } |
||
2698 |