Passed
Push — master ( 20aac0...5868f8 )
by
unknown
20:33 queued 08:57
created

BestFit   B

Complexity

Total Complexity 49

Size/Duplication

Total Lines 419
Duplicated Lines 0 %

Test Coverage

Coverage 83.59%

Importance

Changes 0
Metric Value
wmc 49
eloc 135
dl 0
loc 419
ccs 107
cts 128
cp 0.8359
rs 8.48
c 0
b 0
f 0

21 Methods

Rating   Name   Duplication   Size   Complexity  
A getIntersectSE() 0 7 2
A getSlopeSE() 0 7 2
A getCorrelation() 0 7 2
A getCovariance() 0 7 2
A getSSResiduals() 0 7 2
A leastSquareFit() 0 30 4
A sumSquares() 0 6 1
A getDFResiduals() 0 7 2
A getSSRegression() 0 7 2
A getF() 0 7 2
A getYBestFitValues() 0 3 1
A getGoodnessOfFitPercent() 0 7 2
A getIntersect() 0 7 2
A getGoodnessOfFit() 0 7 2
A getXValues() 0 3 1
A getError() 0 3 1
A getStdevOfResiduals() 0 7 2
A getSlope() 0 7 2
A __construct() 0 17 3
C calculateGoodnessOfFit() 0 51 11
A getBestFitType() 0 3 1

How to fix   Complexity   

Complex Class

Complex classes like BestFit often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

While breaking up the class, it is a good idea to analyze how other classes use BestFit, and based on these observations, apply Extract Interface, too.

1
<?php
2
3
namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
4
5
abstract class BestFit
6
{
7
    /**
8
     * Indicator flag for a calculation error.
9
     */
10
    protected bool $error = false;
11
12
    /**
13
     * Algorithm type to use for best-fit.
14
     */
15
    protected string $bestFitType = 'undetermined';
16
17
    /**
18
     * Number of entries in the sets of x- and y-value arrays.
19
     */
20
    protected int $valueCount;
21
22
    /**
23
     * X-value dataseries of values.
24
     *
25
     * @var float[]
26
     */
27
    protected array $xValues = [];
28
29
    /**
30
     * Y-value dataseries of values.
31
     *
32
     * @var float[]
33
     */
34
    protected array $yValues = [];
35
36
    /**
37
     * Flag indicating whether values should be adjusted to Y=0.
38
     */
39
    protected bool $adjustToZero = false;
40
41
    /**
42
     * Y-value series of best-fit values.
43
     *
44
     * @var float[]
45
     */
46
    protected array $yBestFitValues = [];
47
48
    protected float $goodnessOfFit = 1;
49
50
    protected float $stdevOfResiduals = 0;
51
52
    protected float $covariance = 0;
53
54
    protected float $correlation = 0;
55
56
    protected float $SSRegression = 0;
57
58
    protected float $SSResiduals = 0;
59
60
    protected float $DFResiduals = 0;
61
62
    protected float $f = 0;
63
64
    protected float $slope = 0;
65
66
    protected float $slopeSE = 0;
67
68
    protected float $intersect = 0;
69
70
    protected float $intersectSE = 0;
71
72
    protected float $xOffset = 0;
73
74
    protected float $yOffset = 0;
75
76
    public function getError(): bool
77
    {
78
        return $this->error;
79
    }
80
81 1
    public function getBestFitType(): string
82
    {
83 1
        return $this->bestFitType;
84
    }
85
86
    /**
87
     * Return the Y-Value for a specified value of X.
88
     *
89
     * @param float $xValue X-Value
90
     *
91
     * @return float Y-Value
92
     */
93
    abstract public function getValueOfYForX(float $xValue): float;
94
95
    /**
96
     * Return the X-Value for a specified value of Y.
97
     *
98
     * @param float $yValue Y-Value
99
     *
100
     * @return float X-Value
101
     */
102
    abstract public function getValueOfXForY(float $yValue): float;
103
104
    /**
105
     * Return the original set of X-Values.
106
     *
107
     * @return float[] X-Values
108
     */
109 3
    public function getXValues(): array
110
    {
111 3
        return $this->xValues;
112
    }
113
114
    /**
115
     * Return the Equation of the best-fit line.
116
     *
117
     * @param int $dp Number of places of decimal precision to display
118
     */
119
    abstract public function getEquation(int $dp = 0): string;
120
121
    /**
122
     * Return the Slope of the line.
123
     *
124
     * @param int $dp Number of places of decimal precision to display
125
     */
126 42
    public function getSlope(int $dp = 0): float
127
    {
128 42
        if ($dp != 0) {
129 2
            return round($this->slope, $dp);
130
        }
131
132 42
        return $this->slope;
133
    }
134
135
    /**
136
     * Return the standard error of the Slope.
137
     *
138
     * @param int $dp Number of places of decimal precision to display
139
     */
140 3
    public function getSlopeSE(int $dp = 0): float
141
    {
142 3
        if ($dp != 0) {
143
            return round($this->slopeSE, $dp);
144
        }
145
146 3
        return $this->slopeSE;
147
    }
148
149
    /**
150
     * Return the Value of X where it intersects Y = 0.
151
     *
152
     * @param int $dp Number of places of decimal precision to display
153
     */
154 41
    public function getIntersect(int $dp = 0): float
155
    {
156 41
        if ($dp != 0) {
157 2
            return round($this->intersect, $dp);
158
        }
159
160 41
        return $this->intersect;
161
    }
162
163
    /**
164
     * Return the standard error of the Intersect.
165
     *
166
     * @param int $dp Number of places of decimal precision to display
167
     */
168 2
    public function getIntersectSE(int $dp = 0): float
169
    {
170 2
        if ($dp != 0) {
171
            return round($this->intersectSE, $dp);
172
        }
173
174 2
        return $this->intersectSE;
175
    }
176
177
    /**
178
     * Return the goodness of fit for this regression.
179
     *
180
     * @param int $dp Number of places of decimal precision to return
181
     */
182 10
    public function getGoodnessOfFit(int $dp = 0): float
183
    {
184 10
        if ($dp != 0) {
185 3
            return round($this->goodnessOfFit, $dp);
186
        }
187
188 10
        return $this->goodnessOfFit;
189
    }
190
191
    /**
192
     * Return the goodness of fit for this regression.
193
     *
194
     * @param int $dp Number of places of decimal precision to return
195
     */
196
    public function getGoodnessOfFitPercent(int $dp = 0): float
197
    {
198
        if ($dp != 0) {
199
            return round($this->goodnessOfFit * 100, $dp);
200
        }
201
202
        return $this->goodnessOfFit * 100;
203
    }
204
205
    /**
206
     * Return the standard deviation of the residuals for this regression.
207
     *
208
     * @param int $dp Number of places of decimal precision to return
209
     */
210 6
    public function getStdevOfResiduals(int $dp = 0): float
211
    {
212 6
        if ($dp != 0) {
213
            return round($this->stdevOfResiduals, $dp);
214
        }
215
216 6
        return $this->stdevOfResiduals;
217
    }
218
219
    /**
220
     * @param int $dp Number of places of decimal precision to return
221
     */
222 3
    public function getSSRegression(int $dp = 0): float
223
    {
224 3
        if ($dp != 0) {
225
            return round($this->SSRegression, $dp);
226
        }
227
228 3
        return $this->SSRegression;
229
    }
230
231
    /**
232
     * @param int $dp Number of places of decimal precision to return
233
     */
234 3
    public function getSSResiduals(int $dp = 0): float
235
    {
236 3
        if ($dp != 0) {
237
            return round($this->SSResiduals, $dp);
238
        }
239
240 3
        return $this->SSResiduals;
241
    }
242
243
    /**
244
     * @param int $dp Number of places of decimal precision to return
245
     */
246 3
    public function getDFResiduals(int $dp = 0): float
247
    {
248 3
        if ($dp != 0) {
249
            return round($this->DFResiduals, $dp);
250
        }
251
252 3
        return $this->DFResiduals;
253
    }
254
255
    /**
256
     * @param int $dp Number of places of decimal precision to return
257
     */
258 3
    public function getF(int $dp = 0): float
259
    {
260 3
        if ($dp != 0) {
261
            return round($this->f, $dp);
262
        }
263
264 3
        return $this->f;
265
    }
266
267
    /**
268
     * @param int $dp Number of places of decimal precision to return
269
     */
270 4
    public function getCovariance(int $dp = 0): float
271
    {
272 4
        if ($dp != 0) {
273
            return round($this->covariance, $dp);
274
        }
275
276 4
        return $this->covariance;
277
    }
278
279
    /**
280
     * @param int $dp Number of places of decimal precision to return
281
     */
282 3
    public function getCorrelation(int $dp = 0): float
283
    {
284 3
        if ($dp != 0) {
285
            return round($this->correlation, $dp);
286
        }
287
288 3
        return $this->correlation;
289
    }
290
291
    /**
292
     * @return float[]
293
     */
294
    public function getYBestFitValues(): array
295
    {
296
        return $this->yBestFitValues;
297
    }
298
299 40
    protected function calculateGoodnessOfFit(float $sumX, float $sumY, float $sumX2, float $sumY2, float $sumXY, float $meanX, float $meanY, bool|int $const): void
300
    {
301 40
        $SSres = $SScov = $SStot = $SSsex = 0.0;
302 40
        foreach ($this->xValues as $xKey => $xValue) {
303 40
            $bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
304
305 40
            $SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY);
306 40
            if ($const === true) {
307 35
                $SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY);
308
            } else {
309 5
                $SStot += $this->yValues[$xKey] * $this->yValues[$xKey];
310
            }
311 40
            $SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY);
312 40
            if ($const === true) {
313 35
                $SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX);
314
            } else {
315 5
                $SSsex += $this->xValues[$xKey] * $this->xValues[$xKey];
316
            }
317
        }
318
319 40
        $this->SSResiduals = $SSres;
320 40
        $this->DFResiduals = $this->valueCount - 1 - ($const === true ? 1 : 0);
321
322 40
        if ($this->DFResiduals == 0.0) {
323 1
            $this->stdevOfResiduals = 0.0;
324
        } else {
325 39
            $this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals);
326
        }
327
328 40
        if ($SStot == 0.0 || $SSres == $SStot) {
329
            $this->goodnessOfFit = 1;
330
        } else {
331 40
            $this->goodnessOfFit = 1 - ($SSres / $SStot);
332
        }
333
334 40
        $this->SSRegression = $this->goodnessOfFit * $SStot;
335 40
        $this->covariance = $SScov / $this->valueCount;
336 40
        $this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - $sumX ** 2) * ($this->valueCount * $sumY2 - $sumY ** 2));
337 40
        $this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex);
338 40
        $this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2));
339 40
        if ($this->SSResiduals != 0.0) {
340 28
            if ($this->DFResiduals == 0.0) {
341
                $this->f = 0.0;
342
            } else {
343 28
                $this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals);
344
            }
345
        } else {
346 12
            if ($this->DFResiduals == 0.0) {
347 1
                $this->f = 0.0;
348
            } else {
349 11
                $this->f = $this->SSRegression / $this->DFResiduals;
350
            }
351
        }
352
    }
353
354
    /** @return float|int */
355 40
    private function sumSquares(array $values)
356
    {
357 40
        return array_sum(
358 40
            array_map(
359 40
                fn ($value): float|int => $value ** 2,
360 40
                $values
361 40
            )
362 40
        );
363
    }
364
365
    /**
366
     * @param float[] $yValues
367
     * @param float[] $xValues
368
     */
369 40
    protected function leastSquareFit(array $yValues, array $xValues, bool $const): void
370
    {
371
        // calculate sums
372 40
        $sumValuesX = array_sum($xValues);
373 40
        $sumValuesY = array_sum($yValues);
374 40
        $meanValueX = $sumValuesX / $this->valueCount;
375 40
        $meanValueY = $sumValuesY / $this->valueCount;
376 40
        $sumSquaresX = $this->sumSquares($xValues);
377 40
        $sumSquaresY = $this->sumSquares($yValues);
378 40
        $mBase = $mDivisor = 0.0;
379 40
        $xy_sum = 0.0;
380 40
        for ($i = 0; $i < $this->valueCount; ++$i) {
381 40
            $xy_sum += $xValues[$i] * $yValues[$i];
382
383 40
            if ($const === true) {
384 35
                $mBase += ($xValues[$i] - $meanValueX) * ($yValues[$i] - $meanValueY);
385 35
                $mDivisor += ($xValues[$i] - $meanValueX) * ($xValues[$i] - $meanValueX);
386
            } else {
387 5
                $mBase += $xValues[$i] * $yValues[$i];
388 5
                $mDivisor += $xValues[$i] * $xValues[$i];
389
            }
390
        }
391
392
        // calculate slope
393 40
        $this->slope = $mBase / $mDivisor;
394
395
        // calculate intersect
396 40
        $this->intersect = ($const === true) ? $meanValueY - ($this->slope * $meanValueX) : 0.0;
397
398 40
        $this->calculateGoodnessOfFit($sumValuesX, $sumValuesY, $sumSquaresX, $sumSquaresY, $xy_sum, $meanValueX, $meanValueY, $const);
399
    }
400
401
    /**
402
     * Define the regression.
403
     *
404
     * @param float[] $yValues The set of Y-values for this regression
405
     * @param float[] $xValues The set of X-values for this regression
406
     */
407 40
    public function __construct(array $yValues, array $xValues = [])
408
    {
409
        //    Calculate number of points
410 40
        $yValueCount = count($yValues);
411 40
        $xValueCount = count($xValues);
412
413
        //    Define X Values if necessary
414 40
        if ($xValueCount === 0) {
415
            $xValues = range(1, $yValueCount);
416 40
        } elseif ($yValueCount !== $xValueCount) {
417
            //    Ensure both arrays of points are the same size
418
            $this->error = true;
419
        }
420
421 40
        $this->valueCount = $yValueCount;
422 40
        $this->xValues = $xValues;
423 40
        $this->yValues = $yValues;
424
    }
425
}
426