Total Complexity | 52 |
Total Lines | 464 |
Duplicated Lines | 0 % |
Coverage | 78.36% |
Changes | 0 |
Complex classes like BestFit often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use BestFit, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
5 | class BestFit |
||
6 | { |
||
7 | /** |
||
8 | * Indicator flag for a calculation error. |
||
9 | * |
||
10 | * @var bool |
||
11 | */ |
||
12 | protected $error = false; |
||
13 | |||
14 | /** |
||
15 | * Algorithm type to use for best-fit. |
||
16 | * |
||
17 | * @var string |
||
18 | */ |
||
19 | protected $bestFitType = 'undetermined'; |
||
20 | |||
21 | /** |
||
22 | * Number of entries in the sets of x- and y-value arrays. |
||
23 | * |
||
24 | * @var int |
||
25 | */ |
||
26 | protected $valueCount = 0; |
||
27 | |||
28 | /** |
||
29 | * X-value dataseries of values. |
||
30 | * |
||
31 | * @var float[] |
||
32 | */ |
||
33 | protected $xValues = []; |
||
34 | |||
35 | /** |
||
36 | * Y-value dataseries of values. |
||
37 | * |
||
38 | * @var float[] |
||
39 | */ |
||
40 | protected $yValues = []; |
||
41 | |||
42 | /** |
||
43 | * Flag indicating whether values should be adjusted to Y=0. |
||
44 | * |
||
45 | * @var bool |
||
46 | */ |
||
47 | protected $adjustToZero = false; |
||
48 | |||
49 | /** |
||
50 | * Y-value series of best-fit values. |
||
51 | * |
||
52 | * @var float[] |
||
53 | */ |
||
54 | protected $yBestFitValues = []; |
||
55 | |||
56 | protected $goodnessOfFit = 1; |
||
57 | |||
58 | protected $stdevOfResiduals = 0; |
||
59 | |||
60 | protected $covariance = 0; |
||
61 | |||
62 | protected $correlation = 0; |
||
63 | |||
64 | protected $SSRegression = 0; |
||
65 | |||
66 | protected $SSResiduals = 0; |
||
67 | |||
68 | protected $DFResiduals = 0; |
||
69 | |||
70 | protected $f = 0; |
||
71 | |||
72 | protected $slope = 0; |
||
73 | |||
74 | protected $slopeSE = 0; |
||
75 | |||
76 | protected $intersect = 0; |
||
77 | |||
78 | protected $intersectSE = 0; |
||
79 | |||
80 | protected $xOffset = 0; |
||
81 | |||
82 | protected $yOffset = 0; |
||
83 | |||
84 | public function getError() |
||
85 | { |
||
86 | return $this->error; |
||
87 | } |
||
88 | |||
89 | public function getBestFitType() |
||
90 | { |
||
91 | return $this->bestFitType; |
||
92 | } |
||
93 | |||
94 | /** |
||
95 | * Return the Y-Value for a specified value of X. |
||
96 | * |
||
97 | * @param float $xValue X-Value |
||
98 | * |
||
99 | * @return bool Y-Value |
||
100 | */ |
||
101 | public function getValueOfYForX($xValue) |
||
|
|||
102 | { |
||
103 | return false; |
||
104 | } |
||
105 | |||
106 | /** |
||
107 | * Return the X-Value for a specified value of Y. |
||
108 | * |
||
109 | * @param float $yValue Y-Value |
||
110 | * |
||
111 | * @return bool X-Value |
||
112 | */ |
||
113 | public function getValueOfXForY($yValue) |
||
116 | } |
||
117 | |||
118 | /** |
||
119 | * Return the original set of X-Values. |
||
120 | * |
||
121 | * @return float[] X-Values |
||
122 | */ |
||
123 | 2 | public function getXValues() |
|
124 | { |
||
125 | 2 | return $this->xValues; |
|
126 | } |
||
127 | |||
128 | /** |
||
129 | * Return the Equation of the best-fit line. |
||
130 | * |
||
131 | * @param int $dp Number of places of decimal precision to display |
||
132 | * |
||
133 | * @return bool |
||
134 | */ |
||
135 | public function getEquation($dp = 0) |
||
138 | } |
||
139 | |||
140 | /** |
||
141 | * Return the Slope of the line. |
||
142 | * |
||
143 | * @param int $dp Number of places of decimal precision to display |
||
144 | * |
||
145 | * @return float |
||
146 | */ |
||
147 | 37 | public function getSlope($dp = 0) |
|
148 | { |
||
149 | 37 | if ($dp != 0) { |
|
150 | 2 | return round($this->slope, $dp); |
|
151 | } |
||
152 | |||
153 | 37 | return $this->slope; |
|
154 | } |
||
155 | |||
156 | /** |
||
157 | * Return the standard error of the Slope. |
||
158 | * |
||
159 | * @param int $dp Number of places of decimal precision to display |
||
160 | * |
||
161 | * @return float |
||
162 | */ |
||
163 | 3 | public function getSlopeSE($dp = 0) |
|
164 | { |
||
165 | 3 | if ($dp != 0) { |
|
166 | return round($this->slopeSE, $dp); |
||
167 | } |
||
168 | |||
169 | 3 | return $this->slopeSE; |
|
170 | } |
||
171 | |||
172 | /** |
||
173 | * Return the Value of X where it intersects Y = 0. |
||
174 | * |
||
175 | * @param int $dp Number of places of decimal precision to display |
||
176 | * |
||
177 | * @return float |
||
178 | */ |
||
179 | 36 | public function getIntersect($dp = 0) |
|
180 | { |
||
181 | 36 | if ($dp != 0) { |
|
182 | 2 | return round($this->intersect, $dp); |
|
183 | } |
||
184 | |||
185 | 36 | return $this->intersect; |
|
186 | } |
||
187 | |||
188 | /** |
||
189 | * Return the standard error of the Intersect. |
||
190 | * |
||
191 | * @param int $dp Number of places of decimal precision to display |
||
192 | * |
||
193 | * @return float |
||
194 | */ |
||
195 | 2 | public function getIntersectSE($dp = 0) |
|
196 | { |
||
197 | 2 | if ($dp != 0) { |
|
198 | return round($this->intersectSE, $dp); |
||
199 | } |
||
200 | |||
201 | 2 | return $this->intersectSE; |
|
202 | } |
||
203 | |||
204 | /** |
||
205 | * Return the goodness of fit for this regression. |
||
206 | * |
||
207 | * @param int $dp Number of places of decimal precision to return |
||
208 | * |
||
209 | * @return float |
||
210 | */ |
||
211 | 8 | public function getGoodnessOfFit($dp = 0) |
|
212 | { |
||
213 | 8 | if ($dp != 0) { |
|
214 | 3 | return round($this->goodnessOfFit, $dp); |
|
215 | } |
||
216 | |||
217 | 8 | return $this->goodnessOfFit; |
|
218 | } |
||
219 | |||
220 | /** |
||
221 | * Return the goodness of fit for this regression. |
||
222 | * |
||
223 | * @param int $dp Number of places of decimal precision to return |
||
224 | * |
||
225 | * @return float |
||
226 | */ |
||
227 | public function getGoodnessOfFitPercent($dp = 0) |
||
228 | { |
||
229 | if ($dp != 0) { |
||
230 | return round($this->goodnessOfFit * 100, $dp); |
||
231 | } |
||
232 | |||
233 | return $this->goodnessOfFit * 100; |
||
234 | } |
||
235 | |||
236 | /** |
||
237 | * Return the standard deviation of the residuals for this regression. |
||
238 | * |
||
239 | * @param int $dp Number of places of decimal precision to return |
||
240 | * |
||
241 | * @return float |
||
242 | */ |
||
243 | 5 | public function getStdevOfResiduals($dp = 0) |
|
244 | { |
||
245 | 5 | if ($dp != 0) { |
|
246 | return round($this->stdevOfResiduals, $dp); |
||
247 | } |
||
248 | |||
249 | 5 | return $this->stdevOfResiduals; |
|
250 | } |
||
251 | |||
252 | /** |
||
253 | * @param int $dp Number of places of decimal precision to return |
||
254 | * |
||
255 | * @return float |
||
256 | */ |
||
257 | 3 | public function getSSRegression($dp = 0) |
|
258 | { |
||
259 | 3 | if ($dp != 0) { |
|
260 | return round($this->SSRegression, $dp); |
||
261 | } |
||
262 | |||
263 | 3 | return $this->SSRegression; |
|
264 | } |
||
265 | |||
266 | /** |
||
267 | * @param int $dp Number of places of decimal precision to return |
||
268 | * |
||
269 | * @return float |
||
270 | */ |
||
271 | 3 | public function getSSResiduals($dp = 0) |
|
272 | { |
||
273 | 3 | if ($dp != 0) { |
|
274 | return round($this->SSResiduals, $dp); |
||
275 | } |
||
276 | |||
277 | 3 | return $this->SSResiduals; |
|
278 | } |
||
279 | |||
280 | /** |
||
281 | * @param int $dp Number of places of decimal precision to return |
||
282 | * |
||
283 | * @return float |
||
284 | */ |
||
285 | 3 | public function getDFResiduals($dp = 0) |
|
286 | { |
||
287 | 3 | if ($dp != 0) { |
|
288 | return round($this->DFResiduals, $dp); |
||
289 | } |
||
290 | |||
291 | 3 | return $this->DFResiduals; |
|
292 | } |
||
293 | |||
294 | /** |
||
295 | * @param int $dp Number of places of decimal precision to return |
||
296 | * |
||
297 | * @return float |
||
298 | */ |
||
299 | 3 | public function getF($dp = 0) |
|
300 | { |
||
301 | 3 | if ($dp != 0) { |
|
302 | return round($this->f, $dp); |
||
303 | } |
||
304 | |||
305 | 3 | return $this->f; |
|
306 | } |
||
307 | |||
308 | /** |
||
309 | * @param int $dp Number of places of decimal precision to return |
||
310 | * |
||
311 | * @return float |
||
312 | */ |
||
313 | 3 | public function getCovariance($dp = 0) |
|
314 | { |
||
315 | 3 | if ($dp != 0) { |
|
316 | return round($this->covariance, $dp); |
||
317 | } |
||
318 | |||
319 | 3 | return $this->covariance; |
|
320 | } |
||
321 | |||
322 | /** |
||
323 | * @param int $dp Number of places of decimal precision to return |
||
324 | * |
||
325 | * @return float |
||
326 | */ |
||
327 | 2 | public function getCorrelation($dp = 0) |
|
328 | { |
||
329 | 2 | if ($dp != 0) { |
|
330 | return round($this->correlation, $dp); |
||
331 | } |
||
332 | |||
333 | 2 | return $this->correlation; |
|
334 | } |
||
335 | |||
336 | /** |
||
337 | * @return float[] |
||
338 | */ |
||
339 | public function getYBestFitValues() |
||
342 | } |
||
343 | |||
344 | 39 | protected function calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const): void |
|
345 | { |
||
346 | 39 | $SSres = $SScov = $SScor = $SStot = $SSsex = 0.0; |
|
347 | 39 | foreach ($this->xValues as $xKey => $xValue) { |
|
348 | 39 | $bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue); |
|
349 | |||
350 | 39 | $SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY); |
|
351 | 39 | if ($const === true) { |
|
352 | 34 | $SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY); |
|
353 | } else { |
||
354 | 5 | $SStot += $this->yValues[$xKey] * $this->yValues[$xKey]; |
|
355 | } |
||
356 | 39 | $SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY); |
|
357 | 39 | if ($const === true) { |
|
358 | 34 | $SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX); |
|
359 | } else { |
||
360 | 5 | $SSsex += $this->xValues[$xKey] * $this->xValues[$xKey]; |
|
361 | } |
||
362 | } |
||
363 | |||
364 | 39 | $this->SSResiduals = $SSres; |
|
365 | 39 | $this->DFResiduals = $this->valueCount - 1 - ($const === true ? 1 : 0); |
|
366 | |||
367 | 39 | if ($this->DFResiduals == 0.0) { |
|
368 | 1 | $this->stdevOfResiduals = 0.0; |
|
369 | } else { |
||
370 | 38 | $this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals); |
|
371 | } |
||
372 | 39 | if (($SStot == 0.0) || ($SSres == $SStot)) { |
|
1 ignored issue
–
show
|
|||
373 | $this->goodnessOfFit = 1; |
||
374 | } else { |
||
375 | 39 | $this->goodnessOfFit = 1 - ($SSres / $SStot); |
|
376 | } |
||
377 | |||
378 | 39 | $this->SSRegression = $this->goodnessOfFit * $SStot; |
|
379 | 39 | $this->covariance = $SScov / $this->valueCount; |
|
380 | 39 | $this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - $sumX ** 2) * ($this->valueCount * $sumY2 - $sumY ** 2)); |
|
381 | 39 | $this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex); |
|
382 | 39 | $this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2)); |
|
383 | 39 | if ($this->SSResiduals != 0.0) { |
|
384 | 27 | if ($this->DFResiduals == 0.0) { |
|
385 | $this->f = 0.0; |
||
386 | } else { |
||
387 | 27 | $this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals); |
|
388 | } |
||
389 | } else { |
||
390 | 12 | if ($this->DFResiduals == 0.0) { |
|
391 | 1 | $this->f = 0.0; |
|
392 | } else { |
||
393 | 11 | $this->f = $this->SSRegression / $this->DFResiduals; |
|
394 | } |
||
395 | } |
||
396 | 39 | } |
|
397 | |||
398 | 39 | private function sumSquares(array $values) |
|
399 | { |
||
400 | 39 | return array_sum( |
|
401 | 39 | array_map( |
|
402 | function ($value) { |
||
403 | 39 | return $value ** 2; |
|
404 | 39 | }, |
|
405 | $values |
||
406 | ) |
||
407 | ); |
||
408 | } |
||
409 | |||
410 | /** |
||
411 | * @param float[] $yValues |
||
412 | * @param float[] $xValues |
||
413 | */ |
||
414 | 39 | protected function leastSquareFit(array $yValues, array $xValues, bool $const): void |
|
415 | { |
||
416 | // calculate sums |
||
417 | 39 | $sumValuesX = array_sum($xValues); |
|
418 | 39 | $sumValuesY = array_sum($yValues); |
|
419 | 39 | $meanValueX = $sumValuesX / $this->valueCount; |
|
420 | 39 | $meanValueY = $sumValuesY / $this->valueCount; |
|
421 | 39 | $sumSquaresX = $this->sumSquares($xValues); |
|
422 | 39 | $sumSquaresY = $this->sumSquares($yValues); |
|
423 | 39 | $mBase = $mDivisor = 0.0; |
|
424 | 39 | $xy_sum = 0.0; |
|
425 | 39 | for ($i = 0; $i < $this->valueCount; ++$i) { |
|
426 | 39 | $xy_sum += $xValues[$i] * $yValues[$i]; |
|
427 | |||
428 | 39 | if ($const === true) { |
|
429 | 34 | $mBase += ($xValues[$i] - $meanValueX) * ($yValues[$i] - $meanValueY); |
|
430 | 34 | $mDivisor += ($xValues[$i] - $meanValueX) * ($xValues[$i] - $meanValueX); |
|
431 | } else { |
||
432 | 5 | $mBase += $xValues[$i] * $yValues[$i]; |
|
433 | 5 | $mDivisor += $xValues[$i] * $xValues[$i]; |
|
434 | } |
||
435 | } |
||
436 | |||
437 | // calculate slope |
||
438 | 39 | $this->slope = $mBase / $mDivisor; |
|
439 | |||
440 | // calculate intersect |
||
441 | 39 | $this->intersect = ($const === true) ? $meanValueY - ($this->slope * $meanValueX) : 0.0; |
|
442 | |||
443 | 39 | $this->calculateGoodnessOfFit($sumValuesX, $sumValuesY, $sumSquaresX, $sumSquaresY, $xy_sum, $meanValueX, $meanValueY, $const); |
|
444 | 39 | } |
|
445 | |||
446 | /** |
||
447 | * Define the regression. |
||
448 | * |
||
449 | * @param float[] $yValues The set of Y-values for this regression |
||
450 | * @param float[] $xValues The set of X-values for this regression |
||
451 | */ |
||
452 | 39 | public function __construct($yValues, $xValues = []) |
|
469 | 39 | } |
|
470 | } |
||
471 |
This check looks for parameters that have been defined for a function or method, but which are not used in the method body.