LogarithmicBestFit   A
last analyzed

Complexity

Total Complexity 7

Size/Duplication

Total Lines 73
Duplicated Lines 0 %

Test Coverage

Coverage 66.67%

Importance

Changes 0
Metric Value
wmc 7
eloc 14
dl 0
loc 73
ccs 12
cts 18
cp 0.6667
rs 10
c 0
b 0
f 0

5 Methods

Rating   Name   Duplication   Size   Complexity  
A getEquation() 0 6 1
A getValueOfXForY() 0 3 1
A getValueOfYForX() 0 3 1
A __construct() 0 6 2
A logarithmicRegression() 0 8 2
1
<?php
2
3
namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
4
5
class LogarithmicBestFit extends BestFit
6
{
7
    /**
8
     * Algorithm type to use for best-fit
9
     * (Name of this Trend class).
10
     */
11
    protected string $bestFitType = 'logarithmic';
12
13
    /**
14
     * Return the Y-Value for a specified value of X.
15
     *
16
     * @param float $xValue X-Value
17
     *
18
     * @return float Y-Value
19
     */
20 1
    public function getValueOfYForX(float $xValue): float
21
    {
22 1
        return $this->getIntersect() + $this->getSlope() * log($xValue - $this->xOffset);
23
    }
24
25
    /**
26
     * Return the X-Value for a specified value of Y.
27
     *
28
     * @param float $yValue Y-Value
29
     *
30
     * @return float X-Value
31
     */
32
    public function getValueOfXForY(float $yValue): float
33
    {
34
        return exp(($yValue - $this->getIntersect()) / $this->getSlope());
35
    }
36
37
    /**
38
     * Return the Equation of the best-fit line.
39
     *
40
     * @param int $dp Number of places of decimal precision to display
41
     */
42
    public function getEquation(int $dp = 0): string
43
    {
44
        $slope = $this->getSlope($dp);
45
        $intersect = $this->getIntersect($dp);
46
47
        return 'Y = ' . $slope . ' * log(' . $intersect . ' * X)';
48
    }
49
50
    /**
51
     * Execute the regression and calculate the goodness of fit for a set of X and Y data values.
52
     *
53
     * @param float[] $yValues The set of Y-values for this regression
54
     * @param float[] $xValues The set of X-values for this regression
55
     */
56 1
    private function logarithmicRegression(array $yValues, array $xValues, bool $const): void
57
    {
58 1
        $adjustedYValues = array_map(
59 1
            fn ($value): float => ($value < 0.0) ? 0 - log(abs($value)) : log($value),
60 1
            $yValues
61 1
        );
62
63 1
        $this->leastSquareFit($adjustedYValues, $xValues, $const);
64
    }
65
66
    /**
67
     * Define the regression and calculate the goodness of fit for a set of X and Y data values.
68
     *
69
     * @param float[] $yValues The set of Y-values for this regression
70
     * @param float[] $xValues The set of X-values for this regression
71
     */
72 1
    public function __construct(array $yValues, array $xValues = [], bool $const = true)
73
    {
74 1
        parent::__construct($yValues, $xValues);
75
76 1
        if (!$this->error) {
77 1
            $this->logarithmicRegression($yValues, $xValues, (bool) $const);
78
        }
79
    }
80
}
81