1
|
|
|
<?php |
2
|
|
|
|
3
|
|
|
namespace PhpOffice\PhpSpreadsheet\Shared\Trend; |
4
|
|
|
|
5
|
|
|
class LogarithmicBestFit extends BestFit |
6
|
|
|
{ |
7
|
|
|
/** |
8
|
|
|
* Algorithm type to use for best-fit |
9
|
|
|
* (Name of this Trend class). |
10
|
|
|
*/ |
11
|
|
|
protected string $bestFitType = 'logarithmic'; |
12
|
|
|
|
13
|
|
|
/** |
14
|
|
|
* Return the Y-Value for a specified value of X. |
15
|
|
|
* |
16
|
|
|
* @param float $xValue X-Value |
17
|
|
|
* |
18
|
|
|
* @return float Y-Value |
19
|
|
|
*/ |
20
|
1 |
|
public function getValueOfYForX(float $xValue): float |
21
|
|
|
{ |
22
|
1 |
|
return $this->getIntersect() + $this->getSlope() * log($xValue - $this->xOffset); |
23
|
|
|
} |
24
|
|
|
|
25
|
|
|
/** |
26
|
|
|
* Return the X-Value for a specified value of Y. |
27
|
|
|
* |
28
|
|
|
* @param float $yValue Y-Value |
29
|
|
|
* |
30
|
|
|
* @return float X-Value |
31
|
|
|
*/ |
32
|
|
|
public function getValueOfXForY(float $yValue): float |
33
|
|
|
{ |
34
|
|
|
return exp(($yValue - $this->getIntersect()) / $this->getSlope()); |
35
|
|
|
} |
36
|
|
|
|
37
|
|
|
/** |
38
|
|
|
* Return the Equation of the best-fit line. |
39
|
|
|
* |
40
|
|
|
* @param int $dp Number of places of decimal precision to display |
41
|
|
|
*/ |
42
|
|
|
public function getEquation(int $dp = 0): string |
43
|
|
|
{ |
44
|
|
|
$slope = $this->getSlope($dp); |
45
|
|
|
$intersect = $this->getIntersect($dp); |
46
|
|
|
|
47
|
|
|
return 'Y = ' . $slope . ' * log(' . $intersect . ' * X)'; |
48
|
|
|
} |
49
|
|
|
|
50
|
|
|
/** |
51
|
|
|
* Execute the regression and calculate the goodness of fit for a set of X and Y data values. |
52
|
|
|
* |
53
|
|
|
* @param float[] $yValues The set of Y-values for this regression |
54
|
|
|
* @param float[] $xValues The set of X-values for this regression |
55
|
|
|
*/ |
56
|
1 |
|
private function logarithmicRegression(array $yValues, array $xValues, bool $const): void |
57
|
|
|
{ |
58
|
1 |
|
$adjustedYValues = array_map( |
59
|
1 |
|
fn ($value): float => ($value < 0.0) ? 0 - log(abs($value)) : log($value), |
60
|
1 |
|
$yValues |
61
|
1 |
|
); |
62
|
|
|
|
63
|
1 |
|
$this->leastSquareFit($adjustedYValues, $xValues, $const); |
64
|
|
|
} |
65
|
|
|
|
66
|
|
|
/** |
67
|
|
|
* Define the regression and calculate the goodness of fit for a set of X and Y data values. |
68
|
|
|
* |
69
|
|
|
* @param float[] $yValues The set of Y-values for this regression |
70
|
|
|
* @param float[] $xValues The set of X-values for this regression |
71
|
|
|
*/ |
72
|
1 |
|
public function __construct(array $yValues, array $xValues = [], bool $const = true) |
73
|
|
|
{ |
74
|
1 |
|
parent::__construct($yValues, $xValues); |
75
|
|
|
|
76
|
1 |
|
if (!$this->error) { |
77
|
1 |
|
$this->logarithmicRegression($yValues, $xValues, (bool) $const); |
78
|
|
|
} |
79
|
|
|
} |
80
|
|
|
} |
81
|
|
|
|