1
|
|
|
# encoding=utf8 |
2
|
|
|
|
3
|
|
|
"""The implementation of tasks.""" |
4
|
|
|
|
5
|
|
|
import logging |
6
|
|
|
from enum import Enum |
7
|
|
|
|
8
|
|
|
from matplotlib import pyplot as plt |
9
|
|
|
from numpy import inf, random as rand |
10
|
|
|
|
11
|
|
|
from NiaPy.util import ( |
12
|
|
|
limit_repair, |
13
|
|
|
fullArray, |
14
|
|
|
FesException, |
15
|
|
|
GenException, |
16
|
|
|
RefException |
17
|
|
|
) |
18
|
|
|
from NiaPy.benchmarks.utility import Utility |
19
|
|
|
|
20
|
|
|
|
21
|
|
|
logging.basicConfig() |
22
|
|
|
logger = logging.getLogger("NiaPy.task.Task") |
23
|
|
|
logger.setLevel("INFO") |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
class OptimizationType(Enum): |
27
|
|
|
r"""Enum representing type of optimization. |
28
|
|
|
|
29
|
|
|
Attributes: |
30
|
|
|
MINIMIZATION (int): Represents minimization problems and is default optimization type of all algorithms. |
31
|
|
|
MAXIMIZATION (int): Represents maximization problems. |
32
|
|
|
|
33
|
|
|
""" |
34
|
|
|
|
35
|
|
|
MINIMIZATION = 1.0 |
36
|
|
|
MAXIMIZATION = -1.0 |
37
|
|
|
|
38
|
|
|
|
39
|
|
|
class Task: |
40
|
|
|
r"""Class representing problem to solve with optimization. |
41
|
|
|
|
42
|
|
|
Date: |
43
|
|
|
2019 |
44
|
|
|
|
45
|
|
|
Author: |
46
|
|
|
Klemen Berkovič and others |
47
|
|
|
|
48
|
|
|
Attributes: |
49
|
|
|
D (int): Dimension of the problem. |
50
|
|
|
Lower (numpy.ndarray): Lower bounds of the problem. |
51
|
|
|
Upper (numpy.ndarray): Upper bounds of the problem. |
52
|
|
|
bRange (numpy.ndarray): Search range between upper and lower limits. |
53
|
|
|
optType (OptimizationType): Optimization type to use. |
54
|
|
|
|
55
|
|
|
See Also: |
56
|
|
|
* :class:`NiaPy.util.Utility` |
57
|
|
|
|
58
|
|
|
""" |
59
|
|
|
|
60
|
|
|
D = 0 |
61
|
|
|
benchmark = None |
62
|
|
|
Lower, Upper, bRange = inf, inf, inf |
63
|
|
|
optType = OptimizationType.MINIMIZATION |
64
|
|
|
|
65
|
|
|
def __init__(self, D=0, optType=OptimizationType.MINIMIZATION, benchmark=None, Lower=None, Upper=None, frepair=limit_repair, **kwargs): |
66
|
|
|
r"""Initialize task class for optimization. |
67
|
|
|
|
68
|
|
|
Arguments: |
69
|
|
|
D (Optional[int]): Number of dimensions. |
70
|
|
|
optType (Optional[OptimizationType]): Set the type of optimization. |
71
|
|
|
benchmark (Union[str, Benchmark]): Problem to solve with optimization. |
72
|
|
|
Lower (Optional[numpy.ndarray]): Lower limits of the problem. |
73
|
|
|
Upper (Optional[numpy.ndarray]): Upper limits of the problem. |
74
|
|
|
frepair (Optional[Callable[[numpy.ndarray, numpy.ndarray, numpy.ndarray, Dict[str, Any]], numpy.ndarray]]): Function for reparing individuals components to desired limits. |
75
|
|
|
|
76
|
|
|
See Also: |
77
|
|
|
* `func`:NiaPy.util.Utility.__init__` |
78
|
|
|
* `func`:NiaPy.util.Utility.repair` |
79
|
|
|
|
80
|
|
|
""" |
81
|
|
|
|
82
|
|
|
# dimension of the problem |
83
|
|
|
self.D = D |
84
|
|
|
# set optimization type |
85
|
|
|
self.optType = optType |
86
|
|
|
# set optimization function |
87
|
|
|
self.benchmark = Utility().get_benchmark(benchmark) if benchmark is not None else None |
88
|
|
|
|
89
|
|
|
if self.benchmark is not None: |
90
|
|
|
self.Fun = self.benchmark.function() if self.benchmark is not None else None |
91
|
|
|
|
92
|
|
|
# set Lower limits |
93
|
|
|
if Lower is not None: |
94
|
|
|
self.Lower = fullArray(Lower, self.D) |
95
|
|
|
elif Lower is None and benchmark is not None: |
96
|
|
|
self.Lower = fullArray(self.benchmark.Lower, self.D) |
97
|
|
|
else: |
98
|
|
|
self.Lower = fullArray(0, self.D) |
99
|
|
|
|
100
|
|
|
# set Upper limits |
101
|
|
|
if Upper is not None: |
102
|
|
|
self.Upper = fullArray(Upper, self.D) |
103
|
|
|
elif Upper is None and benchmark is not None: |
104
|
|
|
self.Upper = fullArray(self.benchmark.Upper, self.D) |
105
|
|
|
else: |
106
|
|
|
self.Upper = fullArray(0, self.D) |
107
|
|
|
|
108
|
|
|
# set range |
109
|
|
|
self.bRange = self.Upper - self.Lower |
110
|
|
|
# set repair function |
111
|
|
|
self.frepair = frepair |
112
|
|
|
|
113
|
|
|
def dim(self): |
114
|
|
|
r"""Get the number of dimensions. |
115
|
|
|
|
116
|
|
|
Returns: |
117
|
|
|
int: Dimension of problem optimizing. |
118
|
|
|
|
119
|
|
|
""" |
120
|
|
|
|
121
|
|
|
return self.D |
122
|
|
|
|
123
|
|
|
def bcLower(self): |
124
|
|
|
r"""Get the array of lower bound constraint. |
125
|
|
|
|
126
|
|
|
Returns: |
127
|
|
|
numpy.ndarray: Lower bound. |
128
|
|
|
|
129
|
|
|
""" |
130
|
|
|
|
131
|
|
|
return self.Lower |
132
|
|
|
|
133
|
|
|
def bcUpper(self): |
134
|
|
|
r"""Get the array of upper bound constraint. |
135
|
|
|
|
136
|
|
|
Returns: |
137
|
|
|
numpy.ndarray: Upper bound. |
138
|
|
|
|
139
|
|
|
""" |
140
|
|
|
|
141
|
|
|
return self.Upper |
142
|
|
|
|
143
|
|
|
def bcRange(self): |
144
|
|
|
r"""Get the range of bound constraint. |
145
|
|
|
|
146
|
|
|
Returns: |
147
|
|
|
numpy.ndarray: Range between lower and upper bound. |
148
|
|
|
|
149
|
|
|
""" |
150
|
|
|
|
151
|
|
|
return self.Upper - self.Lower |
152
|
|
|
|
153
|
|
|
def repair(self, x, rnd=rand): |
154
|
|
|
r"""Repair solution and put the solution in the random position inside of the bounds of problem. |
155
|
|
|
|
156
|
|
|
Arguments: |
157
|
|
|
x (numpy.ndarray): Solution to check and repair if needed. |
158
|
|
|
rnd (mtrand.RandomState): Random number generator. |
159
|
|
|
|
160
|
|
|
Returns: |
161
|
|
|
numpy.ndarray: Fixed solution. |
162
|
|
|
|
163
|
|
|
See Also: |
164
|
|
|
* :func:`NiaPy.util.limitRepair` |
165
|
|
|
* :func:`NiaPy.util.limitInversRepair` |
166
|
|
|
* :func:`NiaPy.util.wangRepair` |
167
|
|
|
* :func:`NiaPy.util.randRepair` |
168
|
|
|
* :func:`NiaPy.util.reflectRepair` |
169
|
|
|
|
170
|
|
|
""" |
171
|
|
|
|
172
|
|
|
return self.frepair(x, self.Lower, self.Upper, rnd=rnd) |
173
|
|
|
|
174
|
|
|
def nextIter(self): |
175
|
|
|
r"""Increments the number of algorithm iterations.""" |
176
|
|
|
|
177
|
|
|
def start(self): |
178
|
|
|
r"""Start stopwatch.""" |
179
|
|
|
|
180
|
|
|
def eval(self, A): |
181
|
|
|
r"""Evaluate the solution A. |
182
|
|
|
|
183
|
|
|
Arguments: |
184
|
|
|
A (numpy.ndarray): Solution to evaluate. |
185
|
|
|
|
186
|
|
|
Returns: |
187
|
|
|
float: Fitness/function values of solution. |
188
|
|
|
|
189
|
|
|
""" |
190
|
|
|
|
191
|
|
|
return self.Fun(self.D, A) * self.optType.value |
192
|
|
|
|
193
|
|
|
def isFeasible(self, A): |
194
|
|
|
r"""Check if the solution is feasible. |
195
|
|
|
|
196
|
|
|
Arguments: |
197
|
|
|
A (Union[numpy.ndarray, Individual]): Solution to check for feasibility. |
198
|
|
|
|
199
|
|
|
Returns: |
200
|
|
|
bool: `True` if solution is in feasible space else `False`. |
201
|
|
|
|
202
|
|
|
""" |
203
|
|
|
|
204
|
|
|
return False not in (A >= self.Lower) and False not in (A <= self.Upper) |
205
|
|
|
|
206
|
|
|
def stopCond(self): |
207
|
|
|
r"""Check if optimization task should stop. |
208
|
|
|
|
209
|
|
|
Returns: |
210
|
|
|
bool: `True` if stopping condition is meet else `False`. |
211
|
|
|
|
212
|
|
|
""" |
213
|
|
|
|
214
|
|
|
return False |
215
|
|
|
|
216
|
|
|
|
217
|
|
|
class CountingTask(Task): |
218
|
|
|
r"""Optimization task with added counting of function evaluations and algorithm iterations/generations. |
219
|
|
|
|
220
|
|
|
Attributes: |
221
|
|
|
Iters (int): Number of algorithm iterations/generations. |
222
|
|
|
Evals (int): Number of function evaluations. |
223
|
|
|
|
224
|
|
|
See Also: |
225
|
|
|
* :class:`NiaPy.util.Task` |
226
|
|
|
|
227
|
|
|
""" |
228
|
|
|
|
229
|
|
|
def __init__(self, **kwargs): |
230
|
|
|
r"""Initialize counting task. |
231
|
|
|
|
232
|
|
|
Args: |
233
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
234
|
|
|
|
235
|
|
|
See Also: |
236
|
|
|
* :func:`NiaPy.util.Task.__init__` |
237
|
|
|
|
238
|
|
|
""" |
239
|
|
|
|
240
|
|
|
Task.__init__(self, **kwargs) |
241
|
|
|
self.Iters, self.Evals = 0, 0 |
242
|
|
|
|
243
|
|
|
def eval(self, A): |
244
|
|
|
r"""Evaluate the solution A. |
245
|
|
|
|
246
|
|
|
This function increments function evaluation counter `self.Evals`. |
247
|
|
|
|
248
|
|
|
Arguments: |
249
|
|
|
A (numpy.ndarray): Solutions to evaluate. |
250
|
|
|
|
251
|
|
|
Returns: |
252
|
|
|
float: Fitness/function values of solution. |
253
|
|
|
|
254
|
|
|
See Also: |
255
|
|
|
* :func:`NiaPy.util.Task.eval` |
256
|
|
|
|
257
|
|
|
""" |
258
|
|
|
|
259
|
|
|
r = Task.eval(self, A) |
260
|
|
|
self.Evals += 1 |
261
|
|
|
return r |
262
|
|
|
|
263
|
|
|
def evals(self): |
264
|
|
|
r"""Get the number of evaluations made. |
265
|
|
|
|
266
|
|
|
Returns: |
267
|
|
|
int: Number of evaluations made. |
268
|
|
|
|
269
|
|
|
""" |
270
|
|
|
|
271
|
|
|
return self.Evals |
272
|
|
|
|
273
|
|
|
def iters(self): |
274
|
|
|
r"""Get the number of algorithm iteratins made. |
275
|
|
|
|
276
|
|
|
Returns: |
277
|
|
|
int: Number of generations/iterations made by algorithm. |
278
|
|
|
|
279
|
|
|
""" |
280
|
|
|
|
281
|
|
|
return self.Iters |
282
|
|
|
|
283
|
|
|
def nextIter(self): |
284
|
|
|
r"""Increases the number of algorithm iterations made. |
285
|
|
|
|
286
|
|
|
This function increments number of algorithm iterations/generations counter `self.Iters`. |
287
|
|
|
|
288
|
|
|
""" |
289
|
|
|
|
290
|
|
|
self.Iters += 1 |
291
|
|
|
|
292
|
|
|
|
293
|
|
|
class StoppingTask(CountingTask): |
294
|
|
|
r"""Optimization task with implemented checking for stopping criterias. |
295
|
|
|
|
296
|
|
|
Attributes: |
297
|
|
|
nGEN (int): Maximum number of algorithm iterations/generations. |
298
|
|
|
nFES (int): Maximum number of function evaluations. |
299
|
|
|
refValue (float): Reference function/fitness values to reach in optimization. |
300
|
|
|
x (numpy.ndarray): Best found individual. |
301
|
|
|
x_f (float): Best found individual function/fitness value. |
302
|
|
|
|
303
|
|
|
See Also: |
304
|
|
|
* :class:`NiaPy.util.CountingTask` |
305
|
|
|
|
306
|
|
|
""" |
307
|
|
|
|
308
|
|
|
def __init__(self, nFES=inf, nGEN=inf, refValue=None, logger=False, **kwargs): |
309
|
|
|
r"""Initialize task class for optimization. |
310
|
|
|
|
311
|
|
|
Arguments: |
312
|
|
|
nFES (Optional[int]): Number of function evaluations. |
313
|
|
|
nGEN (Optional[int]): Number of generations or iterations. |
314
|
|
|
refValue (Optional[float]): Reference value of function/fitness function. |
315
|
|
|
logger (Optional[bool]): Enable/disable logging of improvements. |
316
|
|
|
|
317
|
|
|
Note: |
318
|
|
|
Storing improvements during the evolutionary cycle is |
319
|
|
|
captured in self.n_evals and self.x_f_vals |
320
|
|
|
|
321
|
|
|
See Also: |
322
|
|
|
* :func:`NiaPy.util.CountingTask.__init__` |
323
|
|
|
|
324
|
|
|
""" |
325
|
|
|
|
326
|
|
|
CountingTask.__init__(self, **kwargs) |
327
|
|
|
self.refValue = (-inf if refValue is None else refValue) |
328
|
|
|
self.logger = logger |
329
|
|
|
self.x, self.x_f = None, inf |
330
|
|
|
self.nFES, self.nGEN = nFES, nGEN |
331
|
|
|
self.n_evals = [] |
332
|
|
|
self.x_f_vals = [] |
333
|
|
|
|
334
|
|
|
def eval(self, A): |
335
|
|
|
r"""Evaluate solution. |
336
|
|
|
|
337
|
|
|
Args: |
338
|
|
|
A (numpy.ndarray): Solution to evaluate. |
339
|
|
|
|
340
|
|
|
Returns: |
341
|
|
|
float: Fitness/function value of solution. |
342
|
|
|
|
343
|
|
|
See Also: |
344
|
|
|
* :func:`NiaPy.util.StoppingTask.stopCond` |
345
|
|
|
* :func:`NiaPy.util.CountingTask.eval` |
346
|
|
|
|
347
|
|
|
""" |
348
|
|
|
|
349
|
|
|
if self.stopCond(): |
350
|
|
|
return inf * self.optType.value |
351
|
|
|
|
352
|
|
|
x_f = CountingTask.eval(self, A) |
353
|
|
|
|
354
|
|
|
if x_f < self.x_f: |
355
|
|
|
self.x_f = x_f |
356
|
|
|
self.n_evals.append(self.Evals) |
357
|
|
|
self.x_f_vals.append(x_f) |
358
|
|
|
if self.logger: |
359
|
|
|
logger.info('nFES:%d => %s' % (self.Evals, self.x_f)) |
360
|
|
|
|
361
|
|
|
return x_f |
362
|
|
|
|
363
|
|
|
def stopCond(self): |
364
|
|
|
r"""Check if stopping condition reached. |
365
|
|
|
|
366
|
|
|
Returns: |
367
|
|
|
bool: `True` if number of function evaluations or number of algorithm iterations/generations or reference values is reach else `False` |
368
|
|
|
|
369
|
|
|
""" |
370
|
|
|
|
371
|
|
|
return (self.Evals >= self.nFES) or (self.Iters >= self.nGEN) or (self.refValue > self.x_f) |
372
|
|
|
|
373
|
|
|
def stopCondI(self): |
374
|
|
|
r"""Check if stopping condition reached and increase number of iterations. |
375
|
|
|
|
376
|
|
|
Returns: |
377
|
|
|
bool: `True` if number of function evaluations or number of algorithm iterations/generations or reference values is reach else `False`. |
378
|
|
|
|
379
|
|
|
See Also: |
380
|
|
|
* :func:`NiaPy.util.StoppingTask.stopCond` |
381
|
|
|
* :func:`NiaPy.util.CountingTask.nextIter` |
382
|
|
|
|
383
|
|
|
""" |
384
|
|
|
|
385
|
|
|
r = self.stopCond() |
386
|
|
|
CountingTask.nextIter(self) |
387
|
|
|
return r |
388
|
|
|
|
389
|
|
|
def return_conv(self): |
390
|
|
|
r"""Get values of x and y axis for plotting covariance graph. |
391
|
|
|
|
392
|
|
|
Returns: |
393
|
|
|
Tuple[List[int], List[float]]: |
394
|
|
|
1. List of ints of function evaluations. |
395
|
|
|
2. List of ints of function/fitness values. |
396
|
|
|
|
397
|
|
|
""" |
398
|
|
|
return self.n_evals, self.x_f_vals |
399
|
|
|
|
400
|
|
|
def plot(self): |
401
|
|
|
"""Plot a simple convergence graph.""" |
402
|
|
|
plt.plot(self.n_evals, self.x_f_vals) |
403
|
|
|
plt.xlabel('nFes') |
404
|
|
|
plt.ylabel('Fitness') |
405
|
|
|
plt.title('Convergence graph') |
406
|
|
|
plt.show() |
407
|
|
|
|
408
|
|
|
|
409
|
|
|
class ThrowingTask(StoppingTask): |
410
|
|
|
r"""Task that throw exceptions when stopping condition is meet. |
411
|
|
|
|
412
|
|
|
See Also: |
413
|
|
|
* :class:`NiaPy.util.StoppingTask` |
414
|
|
|
|
415
|
|
|
""" |
416
|
|
|
|
417
|
|
|
def __init__(self, **kwargs): |
418
|
|
|
r"""Initialize optimization task. |
419
|
|
|
|
420
|
|
|
Args: |
421
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
422
|
|
|
|
423
|
|
|
See Also: |
424
|
|
|
* :func:`NiaPy.util.StoppingTask.__init__` |
425
|
|
|
|
426
|
|
|
""" |
427
|
|
|
|
428
|
|
|
StoppingTask.__init__(self, **kwargs) |
429
|
|
|
|
430
|
|
|
def stopCondE(self): |
431
|
|
|
r"""Throw exception for the given stopping condition. |
432
|
|
|
|
433
|
|
|
Raises: |
434
|
|
|
* FesException: Thrown when the number of function/fitness evaluations is reached. |
435
|
|
|
* GenException: Thrown when the number of algorithms generations/iterations is reached. |
436
|
|
|
* RefException: Thrown when the reference values is reached. |
437
|
|
|
* TimeException: Thrown when algorithm exceeds time run limit. |
438
|
|
|
|
439
|
|
|
""" |
440
|
|
|
|
441
|
|
|
# dtime = datetime.now() - self.startTime |
442
|
|
|
if self.Evals >= self.nFES: |
443
|
|
|
raise FesException() |
444
|
|
|
if self.Iters >= self.nGEN: |
445
|
|
|
raise GenException() |
446
|
|
|
# if self.runTime is not None and self.runTime >= dtime: raise TimeException() |
447
|
|
|
if self.refValue >= self.x_f: |
448
|
|
|
raise RefException() |
449
|
|
|
|
450
|
|
|
def eval(self, A): |
451
|
|
|
r"""Evaluate solution. |
452
|
|
|
|
453
|
|
|
Args: |
454
|
|
|
A (numpy.ndarray): Solution to evaluate. |
455
|
|
|
|
456
|
|
|
Returns: |
457
|
|
|
float: Function/fitness values of solution. |
458
|
|
|
|
459
|
|
|
See Also: |
460
|
|
|
* :func:`NiaPy.util.ThrowingTask.stopCondE` |
461
|
|
|
* :func:`NiaPy.util.StoppingTask.eval` |
462
|
|
|
|
463
|
|
|
""" |
464
|
|
|
|
465
|
|
|
self.stopCondE() |
466
|
|
|
return StoppingTask.eval(self, A) |
467
|
|
|
|